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ABSTRACT
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A series of finite element predictions of the behaviour of a
reinforced unpaved road consisting of a layer of f£ill compacted on top of
a clay subgrade with rough, thin reinforcement placed at the interface,
is described in this thesis. These numerical solutions are obtained
using a large strain finite element formulation that is based on the
displacement method, and are restricted to the case of plane strain,
monotonic loading. Separate elements are used to model the soil and
reinforcement.

In the finite element formulation, an Eulerian description of
deformation 1is adopted and the Jaumann stress rate is used in the soil

constitutive equations. Elastic perfectly-plastic soil models are used
which are based on the von Mises yield function for cohesive soil and the
Matsuoka criterion for frictional material. Emphasis 1is placed on

obtaining new closed form solutions to parts of calculations that are
performed numerically in many existing finite element formulations. The
solution algorithm is based on a 'Modified Euler Scheme'.

The computer implementation of the formulation is checked against an
extensive series of test problems with known closed form solutions.
These include the analysis of finite deformation of a single element of
material and the calculation of small strain collapse loads. Finite
cavity expansion is also studied.

This numerical formulation is used to perform back analyses of a
series of reinforced unpaved rocad model tests. The reinforcement
tensions, and the stresses at the interface with the surrounding soil,
are calculated using the numerical model and discussed with a view to
identifying the mechanisms of reinforcement.

Two existing analytical design models of the reinforced unpaved road
are described and critically reviewed in the light of the finite element
results.
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'The fear of the Lord is the

beginning of wisdom.' Psalm 111 v. 10



ACKNOWLEDGEMENTS

The research described in this thesis was carried out during the
period April 1983 to April 1986, and was made possible by the financial

support of a SERC Research Assistantship.

All of this work was undertaken while I was a member of the Oxford
Soil Mechanics Group, and I should like to express gratitude to my fellow

workers in the group for their advice and encouragement.

I am particularly indebted to Dr George Milligan who supervised my
work for the first six months of this research, and to Dr Guy Houlsby who
acted in this capacity for the remaining period of the project. Guy
Houlsby has been a stimulating person to work with and I wish to record
my sincere appreciation of his help and guidance. I should alsc like to
thank Dr Scott Sloan who, as well as helping me to understand the basic
principles of finite element analysis, provided me with a copy of the

mesh generation program that was used extensively in this research.

I am also grateful to the Fellows of Hertford College who supported
me by means of a Carreras Senior Scholarship. I particularly wish to
thank Dr Gerry McCrum who has often gone out of his way to encourage me

in my work.

Finally, I would wish to thank my family and friends who bore with
considerable patience my preoccupation with this thesis during the six-

month period that it was in preparation.



CHAPTER 1 INTRODUCTION

1.1 The Reinforced Unpaved Road

The use of fabric or polymer grid reinforcing materials to improve
the strength and stability of geotechnical structures is increasing. The
applications of this reinforced earth technique are diverse, and include
the construction of retaining walls, bridge abutments, embankments and
roads. The primary incentive for the use of this technique in favour of
more +traditional methods is that in some cases it can reduce the
construction costs. Although the benefits of using reinforcing materials
are well known, current design methods are generally unable to give
accurate predictions of performance. As a result, over—generous safety
factors are necessary which increase construction costs and therefore

make the use of the reinforced earth technique less attractive.

The particular application of this technique that is the subject of
the research described in this thesis is the use of soil reinforcement to
improve the structural performance of reinforced unpaved roads built over
soft subgrades. 1In this type of construction the reinforcement is placed
directly onto the subgrade prior to placement and compaction of a fill
layer. It is generally accepted that in this application the
reinforcement becomes increasingly éffective as displacements become
large, which means that this particular technique is best suited to the

construction of roads where substantial surface rutting is acceptable.

It is clearly necessary that analytical methods which may be used to

predict the load/deformation characteristics of reinforced unpaved roads



are available to practising engineers for design purposes. Several
simple design methods have therefore been proposed in recent years and
these are generally Dbased on simple analytical models of the
reinforcement mechanisms. These design models are generally limited to
the analysis of road behaviour during a single load application. The
extension to the cyclic loading case is made (if at all) on the basis of

empirical rules.

One of the first mechanistic models of the reinforced unpaved road
was proposed by Barenberg et al. (1975). The suggested method was to
limit the vertical stress at the base of the fill layer to Nccu where Nc
is a bearing capacity factor and cu is the undrained shear strength of
the subgrade. In the unreinforced case Nc should be set to 2.8 (being
slightly 1less than w, the value corresponding to the elastic limit
stress) and in the presence of reinforcement NC could be increased to 5.0
(being slightly less that 7 + 2, which corresponds to plastic failure of
the subgrade). The practical use of this simple approach was reported by
Steward and Mohney (1982), who were involved with the design of unpaved
forest roads. Barenberg's method was used as a starting point, but it
was found to be necessary to adjust the thickness of the aggregate layer

to obtain adequate performance under construction haul traffic.

A more refined model was proposed by Nieuwenhuis (1977) in which the
subgrade was treated as an elastic foundation of the Winkler type. The
stresses at the base of the fill layer were approximated by a hyperbolic
cosine function and shear stresses at the reinforcement/soil interface

were assumed to be zero. The shape of the reinforcement for the case of



a single monotonic 1load was obtained by formulating and solving a one-
dimensional membrane equation. This solution was then used to obtain the

load/displacement response of the structure.

A much more realistic and useful design model was proposed by Giroud
and Noiray (1981). This method considers the effect of subgrade
plasticity and also includes some attempt to quantify the effect of
traffic loading. A further feature of this design method is that it
considers the interaction between the response of the wheels at both ends
of the axle rather than considering each wheel in isolation. This

mechanistic model is described in greater depth in Section 9.2.

An improved form of the Nieuwenhuis model was proposed by Sellmeijer
et al. (1%82) in which the original method was modified to include the
effects of subgrade plasticity. The hyperbolic cosine approximation to
the stresses at the base of the fill layer was abandoned in favour of the
procedure first proposed by Giroud and Noiray (1981) in which the
stresses were assumed to be constant over a rectangular area directly
under the wheel. The Sellmeijer model 1is otherwise similar to the
Nieuwenhuis method in that a membrane equation is formulated and solved
to give the reinforcement profile for the case when frictional stresses
acting on the reinforcement/soil interface are zerco. No attempt is made

in this design model to deal with the effect of traffic loading.

An alternative variation of the Nieuwenhuis method was proposed by
Bourdeau et al. (1982). 1In this approach the idea of an elastic subgrade
is retained, but the method is not 1limited to the case when the
frictional stresses acting on the reinforcement are zero. The inclusion
of shear stresses at the soil/reinforcement interface leads to a non-

linear membrane equation which is solved using a finite difference
1-3



scheme. The authors made no attempt to develop their approach into a
complete design method, but instead suggested that it could be used to

calculate the 'anchorage length' for the reinforcement.

A design method that has some of the characteristics of the Giroud
and Noiray model but which treats each wheel load independently has been
proposed by Sowers et al. (1982). In this approach, which is limited to
the analysis of static loads, some attempt was made to calculate the
variation of the strains in the reinforcement. The method is described

in detail in Section 9.3.

As well as the use of analytical methods of design, some interest
has been shown in the area of formulating numerical models of the
reinforced unpaved road. One of the earliest attempts was described by
Bell et al. (1977) in which a finite element method was used. The £fill
was treated as being elastic and an anisotropic elastic-perfectly plastic
constitutive law was used to model the subgrade. An attempt was made to
correlate the finite element results with the measured behaviour of a
test road built over muskeg. The numerical predictions, however, tended
to underestimate the effects of the reinforcement as observed in the

tests.

A further application of the finite element method to a reinforced
earth problem of this sort has been described by Boutrup and Holtz
(1983). The particular problem studied was a low granular embankment
built over a soft muskeg foundation and which both soil types were
represented by a Drucker-Prager model. The numerical results indicated

that the presence of the reinforcement would reduce both the differential



settlements of the embankment and the magnitude of the shear stresses

transmitted to the subgrade.

A detailed description of a finite element formulation suitable for
the analysis of an axi-symmetric reinforced unpaved foundation is given
by Zeevaert (1980). 1In this formulation, a Drucker—Prager work-hardening
model was used to describe the constitutive behaviour of both frictional
and cohesive soils. The plasticity model was based on the use of an
associated flow rule, and the author noted that this was likely to
predict unrealistically high dilation rates for the frictional soil.
This formulation also included a shear modulus that increased with
confining pressure, although this was not implemented in such a way as to
exclude the possibility of non-conservative behaviour (Houlsby (1985)).
The finite element discretization was based on the use of eight-noded
quadrilateral elements with a nine-point Gaussian integration rule to
model  the soil, and two-noded membrane elements to model the
reinforcement. Slip was allowed at the reinforcement/soil interface on
the basis of a Coulomb friction law. BAn 'Updated Lagrangian' approach
was used to define the deformation of the material, and the general
formulation 1is described as being valid for large displacements. Since
the formulation did not make use of an 'objective' stress rate, however,

it was unable to model accurately effects of large rotation.

In addition to the theoretical work described above, there has been
a considerable amount of activity in the area of model and full scale
tests of reinforced unpaved roads. A good review of the work in this
area 1s given by Love (1984). The main incentive for this experimental
work is to obtain information regarding the deformation that occurs in

structures of this type, which can then be used to improve the analytical



design models. Although the results of these experimental programmes
have given much insight into the behaviour of reinforced unpaved roads,
instrumentation difficulties mean that little information is available
regarding the variation of strains in the reinforcement, or the nature of

the reinforcement/soil interface stresses.

These experimental data are also of considerable use in checking
finite element predictions of the behaviour of reinforced unpaved roads.
If a particular finite element formulation is proved to be reliable in
this way, then it may be used to calculate the quantities that are

difficult to measure accurately in the physical model.

1.2 A Finite Element Model for Reinforced Unpaved Roads

A finite element formulation that is capable of making accurate
predictions of a reinforced unpaved road deforming under conditions of
plane strain monotonic 1loading is described in Chapters 2,3,4 and 5 of
this thesis. The computer implementation of this formulation has been
carefully checked using a series of test problems, and this procedure is
described in Chapter 6. The primary purpose of this thesis is to
describe the finite element back-analysis of a series of tests performed
by Love (1984) on a model reinforced unpaved road, and these calculations
are described in detail in Chapter 7. The reinforcement mechanisms
predicted by these numerical solutions are discussed in Chapter 8, and
two existing analytical models of the reinforced unpaved road are

compared with the finite element results in Chapter 9.



The finite element formulation described in this thesis is limited
to the analysis of roads subjected to a single application of a quasi-
static load, and is 7restricted to plane strain boundary conditions.
Although this represents a simplified form of the general reinforced
unpaved road problem, it is Jjustified on the basis that this type of
analysis can give useful insights into the mechanisms of reinforcement,
which can then be used to understand the response under more complicated
forms of loading. An additional advantage of the use of these loading
conditions is that a considerable amount of plane strain monotonic
loading model test data exists which can be used to validate the finite

element formulation (e.g. Love (1984), Kinney (1979)).

It 1is established from the results of model and full scale tests
performed on reinforced unpaved roads that the effects of the
reinforcement become most apparent when deformations are large. In order
to model this behaviour, the finite element formulation described in this
thesis has been based on a theory in which the strains and displacements
are not confined to being infinitesimal. The ability of this finite
element method to model large strain and large displacement effects

accurately is an important feature of the formulation.

In a typical reinforced unpaved road the £ill is a frictional
material and the subgrade is cohesive. 1In order to develop a realistic
numerical model therefore, it is ﬁecessary to use constitutive laws
appropriate to both these soil types. 1In this formulation, the von Mises
yield criterion is used to model cohesive material, and the Matsuoka
yield function (Matsuoka (1976)) is used as the basis of a plasticity
model for frictional soil. These yield criteria have been chosen rather

than the more usual Tresca and Mohr—Coulomb models on the basis that they



do not contain ‘'singularities’' where the vyield function cannot be
differentiated (except at the origin for the case of the Matsuoka yield

function).

In this finite element formulation, two-dimensional elements are
used to represent the soil, and one-dimensional elements to model the
reinforcement. These reinforcement elements have zero bending stiffness, -
zero thickness and are linearly elastic with respect to Hencky strain.
No slip is allowed at the reinforcement/soil interface, a procedure that
may be Jjustified on the basis that reinforcements are available (e.q.

geogrids) that provide good interlock with the surrounding soil.

1.3 Cconventions and Definitions

The conventions and definitions that are used in this thesis are:-

(1) Stress and strain rates are treated as tensile-positive unless

otherwise noted.

(ii) All the theory described in this thesis relates specifically

to the case of plane strain loading unless otherwise noted.

(iii) A cCartesian co-ordinate scheme is adopted in which z is the
out—of-plane direction. The in-plane stresses are denoted
o o and 7__ .

x’ "yy xy

(iv) The three stress invariants are defined:-



(v)

I = 0 + O + C (1.1)

I = O c + o o] + C c - T (1.2)

2 vy 2z XX zZ XX yY Xy

I = ¢ [o - 2 ] (1.3)
3 zz | XX y¥y Xy

I’, I; and I; denote the equivalent deviatoric stress
1

invariants.

Cauchy stresses and Eulerian strain rates are defined with

respect to a Cartesian co-ordinate system that translates with a material

point but does not rotate.

(vi)

(vii)

It is necessary in the consideration of large displacement
formulations to make a careful distinction between problems
with finite displacement but small strain and rotation, and
those where strains are large and material rotation needs to
be considered (Yamada and Wifi (1977)). The formulation
described 1in this thesis relates to this latter class of
problem. In this thesis therefore, the descriptions 'finite
displacement’ and ‘'finite strain’' should be considered to be

synonymous and to refer to the case where rotations are large.

Some confusion exists in the current literature regarding the
precise definition of the terms 'Total Lagrangian', 'Updated
Lagrangian’ and ‘Eulerian’ when used to define the co—ordinate
systems that are used to describe the deformation. The
following definitions are adopted in this thesis. 'Total

Lagrangian' refers to a description of deformation in which



strains are related to some reference state of the body. The
'Updated Lagrangian' approach refers to a description in which
the reference state is updated as the calculation proceeds.
This type of material description is often used with an
incremental solution scheme in which case the reference state
is updated at the end of each calculation step. In an
'*Eulerian' description, the material strain rates are related
to the instantaneous configuration. It is important to note
that the Updated Lagrangian, and Eulerian approaches only

become equivalent in the limit of zero step size.

1.4 Nomenclature

For convenience, the most frequently used symbols and their meanings

are listed below:-

[B] Matrix relating strain rate and nodal velocities
c Shear strength in triaxial compression
cps Plane strain shear strength

cu Undrained plane strain shear strength
[cl Distortion rate matrix

dij Deformation rate tensor

[D] Material stiffness matrix

[D]e Elastic material stiffness matrix

[D]p Plastic material stiffness matrix

[D]ep Elasto—-plastic material stiffness matrix
E Young's modulus

éxx' éyy Deviatoric Eulerian strain rates

1-10



f(o) Yield function

g(o) Plastic potential

G Shear modulus

Il, IZ, I3 Stress invariants

I;, I;, I; Deviatoric stress invariants
[J] Jacobian matrix

(K] Stiffness matrix

K Bulk modulus

(N} Shape function matrix

pf Footing pressure

pn Normal Pressure

P, Vertical pressure

P Vector of nodal forces

[R] Jaumann rotation matrix

sxx’ syy Deviatoric Cauchy stresses

t Time

ui Generalised velocity

Ui Generalised nodal velocity

U Vector of nodal velocities

v vVolumetric strain rate

xi Generalised co—ordinate

Xi Generalised nodal co—ordinate
X Vector of nodal co—-ordinates
« Iso-parametric reference co-ordinate
e Iso—parametric reference co—ordinate
Yy Density

ya Degree of association

1-11



v Eulerian shear strain rate

& Footing displacement
sij Kronecker delta
e _, €_, € Eulerian strain rates

xx' Yy zZ
éL Longitudinal strain rate

€ Vector of Eulerian strain rates

ée Vector of elastic Eulerian strain rates
ép Vvector of plastic Eulerian strain rates
éxy Clockwise rotation rate
v Poisson's ratio

13 Cauchy stress tensor

6., 0_, 0O Cauchy stresses

xx' yy 2z

GL Longitudinal stress

O .r O, o, Principal Cauchy stresses

c Vector of Cauchy stresses
T Cauchy shear stress

Xy

(o} Triaxial compression friction angle
¢ps Plane strain friction angle
L} Jacobian variation parameter

Wps Plane strain dilation angle

w Rotation rate

Spin tensor



CHAPTER 2 THE CHOICE OF FORMULATION OF A FINITE ELEMENT MODEL

2.1 Introduction

In this chapter, a review of some selected aspects of finite element
theory is discussed with a view to the choice of a finite element
formulation that is capable of modelling the reinforced unpaved road
problem as defined in Chapter 1. An important feature of this problem is
that displacements are large, so the factors involved in deriving finite
element models for which strains are not confined to be infinitesimal are
discussed at length. In addition, since it is a requirement that the
formulation should be capable of modelling undrained clay, a discussion is
included of the difficulties that can arise in the analysis of

incompressible materials.

2.2 Specific Considerations for Large Displacement Analysis

2.2.1 Kinematical Descriptions

In the infinitesimal theory of elasto-plastic deformations, it is
possible to define strain in a unique and unambiguous way. This is not
true 1in large displacement theory hoﬁever, since a variety of co-ordinate
systems may be used to describe the motion and these tend to give rise to

different strain definitions (Bathe et al. (1975), Gadala et al. (1984)).

Consider a body subjected to large displacements as shown in Figure

2.1. The motion begins at time t = 0 and ends at time t = T. The position



of a typical material point, Po, in the initial configuration is described

+ Current configuration
(t=T)
Reference
configuration
Initial configuration
( =0) S,
Figure 2.1: Finite Deformation of a Body

by the Cartesian co-ordinate ai, and the same material point occupies
position PT in the current configuration which is described by the
Cartesian co-ordinate xi. Two separate approaches, termed Lagrangian and
Eulerian, may be used to describe the kinematics of deformation of the

body.

In the Lagrangian description, the co—ordinate xi is related to xi the
co-ordinate describing the position of the material point in some reference

configuration by a function of the form:-
b.¢ = X (xr t) : (2.1)
i ity )

This approach lends itself to a description of the deformation in terms of
Green-Lagrange strain which is given by the expression:-—

e %

E (2.2)
ij



where sij is the Kronecker delta. Several possibilities exist for the
choice of reference state. In a Total Lagrangian formulation, the
reference state is chosen to represent the geometry at the start of the
analysis, but other possibilities exist, for example the Updated Lagrangian
description in which the reference state is updated as the calculation
proceeds. A feature of the Lagrangian approach is that the equilibrium
equation is written in terms of the reference configuration of the body.
This requires the use of 2nd Picla-Kirchoff stress which is based on the
reference configuration and is energetically conjugate with Green-Lagrange
strain. This stress measure is required for mathematical consistency

although it lacks any obvious physical interpretation.

The Lagrangian formulation is well suited to the analysis of materials
for which the constitutive laws may be written in terms of the strains in
the body, and where the unstrained configuration of the body may be
identified. This is generally not the case in Soil Mechanics, since most
plasticity theories are based on the state of stress rather than the
deformation. Increments of Green-Lagrange strain cannot be added directly,
which means that this strain measure is inconvenient for use in an

incremental formulation.

One of the earliest finite element formulations valid for
displacements of arbitrary magnitude was based on a Lagrangian description
in which an elasto-plastic constitutive law was used to relate Green-—
Lagrange strain rate to the Jaumann rate of the 2nd Piola-Kirchoff stress
(Hibbitt et al. (1970)). In this formulation, an additive decomposition of
strain rate into elastic and plastic parts was used in the same way as in
the infinitesimal theory. This generalization of the small strain case was

discussed by Lee (1969) who argues that additive decomposition of the



Green-Lagrange sStrain rate is not valid, and suggests a multiplicative’
decomposition instead. This particular point is also mentioned by Nemat-
Nasser (1979) and Iee and McMeeking (1980). Several other workers have
published Lagrangian formulations including Zeevaert (1980) who describes a
finite element method suitable for the analysis of the axi-—symmetric

reinforced unpaved road problem.

An alternative to the Lagrangian approach is the Eulerian description
which, although currently less popular than the Lagrangian formulation, can
sometimes lead to simpler forms of the finite element equations. The basis
of the Eulerian approach is to consider the velocity of a material point,
ui, in the current configuration, to be related to the co—ordinates of the

material point, xi and the time t in a relationship of the form:-

u. = ui(xi, t) (2.3)

The deformation of the material may then be described by deformation rates
obtained from the partial derivatives of the above expression:-—
au.

a . = i (2.4)
ij ax

This form of the kinematical equations is particularly well suited to the
analysis of materials for which constitutive laws are conveniently written
in terms of stress and strain rates as is often the case for problems in

Soil Mechanics.

Kinematical descriptions of this type have been used by Seth (1935)

and Murnaghan (1937) for the solution of Jlarge strain problems in



elasticity, and by Osias and Swedlow (1974), McMeeking and Rice (1975),
Carter et al. (1977) and Carter (1977) as the basis of large strain elasto-

plastic finite element formulations.

The choice of kinematical description depends mainly on the form of
the material behaviour that is being modelled, but may be influenced by the
ease with which the appropriate material properties can be measured and, to
a certain extent, on personal preference. The Lagrangian approach is best
suited to those problems where the constitutive law may be written in terms
of the total deformation of the material. The Eulerian description,
however, is well suited to the analysis of materials for which the
constitutive 1law is expressed in terms of the current stresses. A further
contrast between these two approaches is that unlike Green-Lagrange strain,
the strains obtained by integrating the Eulerian strain rates are not
geometrically significant because of path dependence (Yamada and Wifi

(1977)).

In spite of the fact that the Eulerian description is currently less
popular that the Lagrangian approach, it 1is the author's opinion that
Eulerian variables have much to recommend them, and these will therefore be

used in the remainder of this dissertation.

2.2.2 Objective Stress Rates

For a mathematical description of material behaviour to be consistent
within the framework of continuum mechanics, it is necessary that the

stress rate used in the constitutive equation should be ‘'objective'. This



condition requires that the stress rate must vanish identically under

conditions of rigid body motion.

In a finite element analysis, it is desirable to calculate the Cauchy
stress at each Gauss point as the calculation proceeds. The Cauchy stress
rate, however, does not satisfy the condition of 'objectivity’' as is

illustrated by the following simple example.

Consider the prismatic rod shown in Figure 2.2 which is subjected to

an axial force F.

~

Figure 2.2: Rod Subjected to Axial Tension

The direct stress in the rod is:-—

_ F
o = _A (2.5)

where A 1is the cross sectional area. The components of Cauchy stress

referred to the fixed co-ordinates X,y are:-



o3 = —_ [ 1 + cos(28) ] (2.6)

= 2 -

o = 3 [ 1 cos(28) ] (2.7)
_ -c .

T = 5 sin(26) (2.8)

If the rod is subjected to a clockwise rotation rate w with the force F
kept constant, then the Cauchy stress rates obtained from the above

equations are:-—

o = 27T W (2.9)
xx Xy

o = 2T W (2.10)
vy Xy

Since these are not identically zero, it is clear that the Cauchy stress

rates do not satisfy the conditions of 'objectivity'.

It may be shown (Prager (196l(a)) that the definition of 'objectivity’
is not sufficiently restrictive to give a unique definition of stress rate.
As a result, several different robjective’ stress rates appear in the

literature, four of which are defined below:-

(a) Jaumann (1911) Stress Rate

= 0,.. - 0. W - oL, W, (2.12)



The superior dot denotes the Cauchy stress rate, and wij is the skew-

symmetric spin tensor:-—

ou. ou.
[ i 3 ] (2.13)
w__ P
1]

(b) Oldroyd (1950) Stress Rate

o = ¢ - 3 _ 4 _ i (2.14)
ij ij ik axk jk axk
(c) Cotter and Rivlin (1955) Stress Rate
: Uy ouy (2.15)
c!* = ¢0.. + — o©,.. 4+ — O . :
ij ij ax. i & X ki
1 J
(d) Truesdell (1953) Stress Rate
. ouy auy ouy (2.16)
cl!' = ¢g.. + O0.. =— =— O, — - O. ——
ij ij ij axk ik axk jk axk

In recent vyears, the Jaumann definition has been almost universally
adopted for use in large strain computations e.g. Eulerian finite element
formulations of Osias and Swedlow (1974) and Carter {(1977), and Lagrangian
formulations by Hibbitt,-Marcal and Rice (1970), Tseng and Lee (1985) and
Taylor and Becker (1983). This popularity stems from the desirable feature
of the Jaumann definition that vanishing of the stress rate implies
stationary behaviour of the stress invariants, and therefore (for isotropic
materials) stationary behaviocur of the yield function. This condition is
not satisfied by the other 'objective' stress rate definitions (Prager

(1961a), (1961b)).



The Jaumann stress rate, however, suffers from the limitation that it
can give rise to physically unrealistic solutions to problems in which
large shear deformations occur. This effect is discussed at length by
Dienes (1979), Johnson and Bammann (1984), Moss (1984) and Sowerby and Chu
(1984), and may be illustrated by considering an initially rectangular

element as it undergoes simple planar shear as shown in Figure 2.3.

st
| Deformed
_ _/ configuration
7
Undeformed | 7/
. . I /
configuration / / y
/ /
/ /
/ /
X
Figure 2.3: Simple Planar Shear
The deformation is described by the velocity field:-—
u = sy (2.17)
v = 0 (2.18)

from which the instantaneous strain rates may be obtained (see Section

3.2):-

€eg = O (2.19)
€ = 0 2.20
vy ( )
y = 8 2.21
Yxy ( )



. s
6. = 2 (2.22)

The Jaumann stress rates are related to the instantaneous strain rates by

the elastic rate equations giving the results:-

Qg

= 0 (2.23)

-1

= Gs (2.24)

The Cauchy stress rates derived from the definition of the Jaumann stress

rate (equation (2.12)) are:-

o = T S (2.25)
XX Xy

g = -T__ 8 2.26
vy Xy ( )
T = Gs - 2 (o -0_) 2.27
xy 2 ' xx vy (2.27)

Equations (2.25), (2.26) and (2.27) may be integrated to give:-

o -5 5 .
cxx = Uxo + yo > Xo + G{|1 - cos(st)] + To sin(st) (2.28)
L
o = o - e o cxo + Gq.l - cos(st) i t 2.29
Yy yo l—i— ] T, sin(st) (2.29)
c -0 .
T = T cos(st) + yo Xo + G] sin(st) (2.30)
Xy o —



where ¢ , © and r are the initial values of o, © and 7. For the
X0 yo ° XX Yy
case when initial stresses are zero, these equations reduce to those

derived by Osias and Swedlow (1974).

The solution to the simple shear problem ig periodic and therefore
physically unrealistic for the case when shear deformations become very
large. Dienes (1979) points out that this inconsistency arises from the
fact that the rotational terms in the Jaumann definition are related to the
vorticity of the velocity field rather than the true material rotation. 1In
this same paper, Dienes proposes a modified form of the Jaumann stress rate
in which the rotational terms are based on the true rotation rate, and uses
this to perform a calculation equivalent to that described above. The
solutions for the stresses in this case increase monotonically with time
and are therefore more realistic than those derived using the Jaumann
stress rate in its unmodified form. The two solutions are, to all intents
and purposes, identical for the case when the shear strain is less than
about wunity, from which it may be inferred that the modification proposed

by Dienes is only necessary when shear strains become very large.

In the finite element formulation described in this dissertation the
original form of the Jaumann stress rate has been adopted, since the shear
strains expected in the analysis are not sufficiently large to justify the

additional complexity of the Dienes modification.

2.2.3 Element Stiffness Matrices

In an Eulerian formulation, it is possible to derive the element

stiffness matrices in a way that retains much of the character of the
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equivalent small strain formulation, as illustrated below for the two-

dimensional case.

If X is a vector of nodal velocities, then the strain rate vector € is

obtained from an equation of the form:-

€ = ([B]X (2.31)

where the [B] matrix is usually written in terms of a set of reference co-
ordinates, which are related to the global co—-ordinates by an iso-
parametric mapping. The equation of virtual work (which is essentially an

equilibrium equation) applied to a single element is:-—

P = JJ (81T ¢ det[J] do dp (2.32)
: £ d

where o, [ are the reference co-ordinates, o 1is the stress vector

-

consistent with the strain rate vector defined in equation (2.31), P is the

vector of consistent nodal forces and the integration is performed over the
element. The Jacobian of the transformation from global to reference co—

ordinates is [J].

Equation (2.32) may be differentiated to give the rate equation:-

P o= JJE {[B]T G det[3] + [[B]T.det[J]] o } dx dg (2.33)
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Note that in this equation the superior dot associated with the second term
in the integrand denotes the time derivative of the complete contents of

the bracket. Equation (2.33) may be re-written:-

LI« 1
If

” {[B]T (D] [B] det[J] + [C]} X da dg (2.34)
E -

where the material stiffness matrix [D] relates stress rate to strain

rate:—
6 = ([D] e (2.35)

and:-—

((B1T det(J]) o (2.36)

[c] X

The stiffness equation, therefore, contains the conventional small
displacement terms but additional terms are present, in the form of the [C]
(distortion rate) matrix, that account for the rate of change of element
geometry. For the case of continuum elements, the [C] matrix must be
obtained by expanding the expression in equation (2.36) whereas for one
dimensional elements a somewhat simpler method based on a modified material
stiffness matrix may be adopted (see Chapters 3 and 5). The distortion rate
matrix is non-symmetrical, which is a factor that needs to be considered in

selecting a suitable algorithm to invert the global stiffness matrix.
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2.2.4 Effect of Mesh Distortion

The mesh distortion that occurs during a large strain finite element
analysis can seriously reduce the accuracy of the calculation. Since it is
generally this effect that limits the displacements that can be accurately
modelled Dby a given finite element formulation, it is necessary firstly to
be able to detect errors of this sort and secondly to develop means by

which this difficulty can be avoided.

The source of the error that arises as the mesh becomes distorted is
the calculation of the element stiffness matrices. The stiffness matrix is

derived from equation (2.34) and is given by:-

[K] = fj { (8]T (D] [B] det[J] + [C]} da ap (2.37)
E

The elements of the [B] and [C] matrices are of the form:-

f(x, B)
b.. = ——= c.. = Nha B, 0.,)
ij det[J] ij k1

(2.38)

where £ and h are polynomial functions of o and B determined by the element
shape functions, and Ckl are the elements of the Cauchy stress tensor.
Equation (2.37) is invariably evaluated wusing a Gaussian quadrature
procedure in which the number of sampling points required for 'exact’
integration is determined on the basis that det[J] is constant over the
element which 1is only the case if the element sides are straight and the
edge nodes lie at their prescribed positions on the element sides. As soon

as the element becomes distorted, the value of det[J] ceases to be constant

and the integrand of equation (2.37) is no longer a rational polynomial,



which means that errors occur in the numerical integration. It should be
noted that these errors in the evaluation of the element stiffness matrices
are associated with element distortions, and are not affected by element

x
aspect ratio.

The errors associated with element distortion may be detected by
inspecting the variation of det[J] over each element as the calculation
proceeds. These variations may be quantified by considering the standard

deviation of det[J]. A Jacobian variation parameter, Yy, may therefore be

derived:—
2 1/2
Jj [det[J] - det[J]} da 4B
E 2.39
v = ( )
.2
(det[J])
where: -
” det[J] do Ap
EEETET - E (2.40)
JI da dg
E
and the integrations are performed over the element. This Jacobian

variation parameter can be checked for each element during the finite
element analysis to ensure that the accuracy of the calculation of the

element stiffness matrices remains within acceptable bounds.

It is often cited that element aspect ratios should be kept as near
unity as possible when preparing a finite element mesh. The above
argument, however, shows that aspect ratio has no effect on the accuracy
of the calculation of the element stiffness matrix. It is, of course,
generally desirable that aspect ratios should be kept small to avoid the
danger of ill-conditioning.



If an element becomes severely distorted during the calculation, it is’
necessary to stop the analysis since all subsequent results will be in
doubt. This difficulty may then be dealt with either by refining the mesh
in the region of distortion or by using a higher order quadrature rule for
those elements that tend to become heavily deformed. This latter approach
is to be preferred in any practical situation, and leads to the concept of
'over—integrating' those elements in the finite element mesh that are known
to become heavily distorted during the calculation. A procedure of this

sort is described by Cook (1981).

It is possible, 1in principle, to deal with the problem of mesh
distortion by refining the mesh during the course of the analysis. In
this sort of procedure, however, it is necessary to extrapolate the Gauss
point stresses in order to obtain the stresses in the updated mesh. It is
well known that this type of calculation is difficult and imprecise, so
this procedure has not been attempted in the calculations described in this

thesis.

2.3 Analysis of Incompressible Materials

It is well accepted that severe numerical difficulties arise when
using the conventional displacement method to analyse incompressible, or
near incompressible materials. These difficulties are caused by the
additional kinematic constraints imposed on the nodal velocities by the
incompressibility condition which reduce the number of free degrees-of-
freedom in the finite element mesh. A particularly full analysis of this
effect is presented by Sloan (1981). Since many of the common elasto-—

plastic constitutive laws used in Soil Mechanics require that
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incompressibility is satisfied throughout the material in the plastic
regime, calculations in which incompressibility effects occur have
considerable practical importance, and have been the subject of much

research.

The effect of incompressibility constraints depends on the type of
calculation being performed. 1In a collapse load calculation the effect of
these additional Xxinematic constraints is to produce an over-stiff
response. In these circumstances the finite element solution often
severely overestimates the 1limit 1load, or in extreme cases exhibits no
limit load at all (Nagtegaal et al. (1974), Sloan and Randolph (1982),
Sloan (1981)). The alternative type of analysis 1is one in which the
stresses at the Gauss points are calculated. In computations of this sort,
the effect of incompressibility constraints is to produce a large scatter
in the results. This effect has been illustrated by a series of numerical
experiments performed by Naylor (1974) involving small strain analyses of a
thick cylinder under internal pressure. The results show that when eight-
noded quadrilateral elements are used with a nine-—point integration rule,
then as perfect incompressibility is reached a reduction of stress accuracy
occurs that takes the form of stress oscillations across the element.
Naylor shows that these inaccuracies are confined to the mean stress terms,
with the deviatoric stresses determined accurately as perfect
incompressibility is reached. A further discussion of the effects of
incompressible material behaviour on the results of thick cylinder

calculations is included in Section 6.7 of this thesis.

Four methods of dealing with the detrimental effect of
incompressibility constraints may be identified, and these are described

below.



A general approach that has been the subject of much previous research
is to modify the original displacement method in such a way as to reduce
the effects of these constraints. One possibility is to use a lower order
of numerical integration in the evaluation of the element stiffness
matrices than 1is required for exact integration*‘ This is the so-called
'‘reduced—integration' technique (Zienkiewicz (1977)). The effectiveness of
using the eight—noded quadrilateral element with four Gauss points is often
cited as an example of this advantages of this method ((Naylor (1974),
Prevost and Hughes (1981)). A number of researchers have investigated a
variant of the 'reduced-integration' approach in which different geometric
expansions are used for the volumetric and deviatoric strain terms
(Nagtegaal et al. (1974), Malkus (1976), Hinton et al. (1978), Marti and

Cundall (1982)). This approach is described as ‘'selective—integration'.

It may Dbe shown that a formulation based on °‘reduced®' or ‘'selective’
integration is equivalent to a mixed method, i.e. an approach in which the
primary variables are not of the same type (Hughes (1977), Malkus and
Hughes (1978), Shimodaira (1985)). Although this formalizes the procedure,
this cannot be used as an argument for the general suitability of these
integration rules, since in any mixed method the possibility exists of

element instability.

The hybrid method is a form of mixed method in which both stresses and
displacements are used as primary variables (Pian (1973), Pian and Lee

(1976), Spilker (1981)). There is some evidence to suggest that this type

x
Exact integration in this context refers to the case when the Jacobian

is constant across the element.



of formulation has several advantages over the conventional displacement

approach, especially for the analysis of incompressible materials.

An alternative way of dealing with incompressibility constraints is
described by Sloan and Randolph (1982) who show that as the order of an
element is increased, the number of degrees—of-freedom per element
increases faster than the number of incompressibility constraints. This
work suggests that if the total number of degrees—of-freedom in a finite
element mesh are held constant, then the total number of constraints can be
redquced by using higher order elements. A satisfactory finite element
solution should, therefore, be possible without having to resort to the use
of ‘'reduced-integration’. This hypothesis was checked and confirmed by
Sloan (1981) who performed a series of small strain collapse load

calculations using fifteen—-noded triangular elements.

A third approach to the problem of incompressibility constraints is
based on the simple argument that the quality of a finite element solution
is related to the difference between the number of degrees—of-freedom in
the mesh and the number of incompressibility constraints. If element types
are chosen for which the total number of degrees—of—freedom increases more
rapidly than the number of incompressibility constraints as the mesh is
refined, then solutions can always be improved simply by introducing more
elements 1into the finite element mesh. According to Sloan (1%81), the
lowest order of triangular element-suitable for this approach is linear
strain for plane strain problems and cubic strain for the axi-symmetric
case. Quadrilateral elements are less attractive with a minimum of a
seventeen—-noded element being necessary for 'full-integration' plane strain

calculations.



A further effect that can Dbe used to advantage, but has received
little attention in the past, is that the number of incompressibility
constraints may be reduced by using special arrangements of elements (Rice
et al. (1979)). An example of this effect is discussed by Nagtegaal et al.
(1974) in which four constant strain triangles are coalesced to form a
quadrilateral and the total number of incompressibility constraints are
shown to be three rather than four, the sum of the incompressibility
constraints of the individual elements. This effect also occurs for the
case of linear strain triangles as is illustrated by the series of thick
cylinder test problems described in Section 6.7. An analysis of this
effect for the six-noded triangle is given by Mercier (1979). Since the
beneficial effect of these special arrangements is generally lost as the
elements become distorted, the use of this approach is strictly limited to
small displacement calculations, or those large displacement calculations
in which the element shape 1is retained as the analysis proceeds. An
example of this latter type of calculation is the cavity expansion analysis
described in Section 6.8 in which quadrilateral 'super—elements’' are used

with considerable advantage.

In the finite element calculations described in this thesis, the third
approach described above has generally been adopted, and the formulation
has been based on the six—noded triangle which is the simplest element for
which this philosophy ié valid. The use of higher order elements would
undoubtedly improve the efficiency of the formulation but this would be at

the expense of considerable additional mathematical complexity.

The formulation described in this thesis is based on a displacement
approach in which an iso-parametric method is used to derive the finite

element equations. This type of approach has been adopted in favour of the



more recently developed formulations (e.g. mixed and hybrid methods) since
the displacement method has already been applied extensively to problems in
geomechanics, and is therefore a suitable starting point for the
development of a large strain finite element theory. It is argued in
Section 2.2.4 that is is necessary to ‘'over-integrate' those elements that
become severely distorted during the analysis. The use of 'reduced-
integration' has therefore been avoided since it is undesirable to use

elements for which the order of integration is critical.

2.4 Solution Schemes

In a finite element analysis where material and/or geometric non-
linearities are present, it is necessary to choose a suitable algorithm for
the solution of the resulting non-linear equations. Finite element
analyses of this sort are invariably performed in a step—-by-step fashion,
and the purpose of the solution scheme is to ensure that equilibrium is

approximately satisfied at the end of each increment. A good review of

Force Force

Exact curve

o = - — b —— — ——

—- S
Displacement Displacement
Euler Scheme Newton-Raphson Scheme
Figure 2.4: Solution Schemes




solution schemes of this sort is given by Stricklin and Haisler (1977).

Non-linear solution schemes can be divided into two broad groups which
are illustrated in Figure 2.4 for the case of a single degree—of-freedom

problem.

The simplest solution algorithm is the Euler scheme in which the exact
curve is approximated by a series of straight lines having a slope equal to
that of the exact curve at the start of the increment. This algorithm is
described by Mondkar and Powell (1978) as a 'Step-by-Step Method'. The
basic scheme may be improved by using the slope of the exact curve at the
mid—-point of the increment rather than at the start, with an iterative
procedure being used to locate the mid-point. This latter procedure has
been used by Carter (1977) 1in a series of large strain calculations.
Another possibility is to retain the basic Euler scheme, but to provide an
equilibrium check at the end of the increment and introduce a correction
procedure. This type of scheme is described by Sloan (1981) as 'Modified
Euler' and by Mondkar and Powell (1978) as 'Step-by-Step with Error

Correction'.

An alternative to the Euler based schemes is the Newton-Raphson set of
algorithms, the basic form of which is also illustrated in Figure 2.4. An
approximation to the exéct curve is again made based on the slope at the
start of the increment but the approximation is then refined using an
iterative procedure in which the stiffness is updated at each iteration.
This scheme has the disadvantage for finite element calculations that the
global stiffness matrix needs to be re-formed and inverted at each
iteration which could 1lead to excessive computer time. A possible

refinement 1is to use the stiffness matrix calculated at the start of the
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increment for all the iterations within that increment, a procedure
described as 'Modified Newton—Raphson' (Sloan (1981)) or 'Initial Stress’
(Thomas (1984)), Nayak and Zienkiewicz (1972)). A scheme of this sort has
been adopted for 1large displacement finite element analyses by Zeevaert

(1980).

The choice of solution scheme for a non-linear finite element
formulation depends on the type of non-linearities present and the
available computational facilities. For the large strain formulation
described in this thesis the Modified Euler Scheme has been adopted, partly
because it tends to be more robust than the Newton-Raphson scheme and
partly because this algorithm has been shown to be efficient for the

solution of small strain collapse problems (Sloan (1981)).

Force |

.

T

LAﬁi-L AB; Displacement
—

Figure 2.5: Modified Euler Scheme
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The particular form of the Modified Euler Scheme used to obtain all of-
the finite element solutions presented in this dissertation is illustrated
diagrammatically in Figure 2.5, again with reference to a single degree—of-
freedom system.

At the start of the ith load step, the individual element stiffness
matrices are calculated, and then assembled and inverted using a Frontal
solution algorithm to give a set of incremental nodal displacements Asi.

The next stage is to calculate a set of stress increments Ac at each Gauss

point, corresponding to the set of incremental nodal displacements Asi.
The stress increments are obtained by performing an integration of the

form:—

t+at
(D] € at (2.41)

o= [

where [D] is the material stiffness matrix relating stress rate to strain

rate, and € is a strain rate vector which, when integrated over the time

step, is compatible with the incremental nodal displacements Asi. The
increment begins at time t, and ends at time t + At. 1In general, a
numerical integration scheme must be used to evaluate equation (2.41) but
in some cases a closed form solution can be obtained and this is clearly
preferable. A full description of these 'stress update' calculations is
given in Chapter 4 for the continuum elements and Section 5.4 for the
membrane elements. The final step in the solution scheme is to calculate
the nodal loads equivalent to the updated stresses at the updated geometry,
denoted Dby Pi in Figure 2.5. These forces are calculated from the virtual

work expression given in equation (2.32). A set of unbalanced nodal loads



(Ri in Figure 2.5) are then calculated and then applied as an equilibrium

correction during the next load increment.

A feature of the scheme described above is that the accuracy of the
calculation is relatively insensitive to errors in the calculation of the
element stiffness matrix. It is, however, vital that the equilibrium check

be performed accurately.

2.5 Summary

The Lagrangian or the Eulerian description of the kinematics of
deformation may be used as the basis of a large displacement finite element
formulation. Although the Eulerian approach is currently the less popular
of the two, it is well suited to the analysis of problems in Soil Mechanics
and as such has been adopted in the formulation described in this

dissertation.

For a mathematical model of material behaviour to be consistent within
the theory of continuum mechanics it is necessary that an 'objective’
stress rate be used in the constitutive equation. A variety of suitable
stress rates have been proposed, but the most widely used is the Jaumann
definition, which has been adopted in this thesis despite the fact that it
can lead to physically unrealistic behaviour when shear strains are very

large.

The analysis of the reinforced unpaved road requires the numerical
modelling of the behaviour of undrained clay, which is incompressible.

Numerical difficulties can arise in the analysis of materials of this sort
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due to the additional kinematic constraints imposed on the nodal velocities
by the incompressibility condition. In all of the calculations described
in this thesis, the six-noded triangular element has been used to model the
continuum. This element may be shown to be suitable for the analysis of

incompressible materials in plane strain.

Mesh distortion can lead to severe accuracy reductions in a large
displacement finite element calculation. This may be dealt with by ‘over-~

integrating' those elements that are known to become heavily distorted

during the analysis.
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CHAPTER 3 FORMULATION OF CONTINUUM ELEMENTS

3.1 Introduction

A large displacement finite element formulation for two—dimensional
plane strain continuum elements is described in this chapter. The
kinematics of deformation have been based on an Eulerian description and
the Jaumann stress rate is used in the constitutive equation to satisfy
the requirements of objectivity. The formulation is restricted to
materials that are elastic perfectly-plastic with constant elastic

parameters,

This formulation is applicable to iso—parametric triangular elements
of arbitrary order, and has therefore been presented in a general form.
Since the six—noded triangle has been used to model the continuum in all
of the calculations described in this dissertation, the specific finite
element equations for this particular element have been included in an

appendix.

3.2 Stress and Strain Definitions

In an Eulerian approach, the ‘kinematics of deformation may be
described by strain rates which are defined in the same way as for the
infinitesimal theory. This type of formulation, therefore, has the
desirable feature that some aspects of the character of the small strain
theory are preserved for the general case that the total deformation is

finite.



Strain rates and the clockwise rotation rate are defined:-

du

¢ = o (3.1)
éyy _ g; (3.2)
9xy _ %; + %; (3.3)
b 15 2)

where the velocities in the x and y directions are given by u, v. The

corresponding Jaumann stress rates from equation (2.12) are:-

Qg

=g - 216 (3.5)
xx XX Xy XY
S =6 +21r 6 (3.6)
Yy vy Xy Xy ’
v _
Uzz = czz (3.7)
v . .
T =T_ +6_(oc. -0_) (3.8)

The superior dot denoteé the time derivative with respect to a set of

stationary Cartesian axes.



3.3 Formulation of the Element Stiffness Matrix

The formulation of the element stiffness matrix is based on the iso-
parametric method which is often used in the derivation of small strain
finite element equations (Zienkiewicz (1979)). The usual small
displacement theory is modified in this formulation to include the
effects of large distortion and large rotation, and follows the general
approach described in Section 2.2.3. 1In the derivation of this theory,
the global Cartesian co-ordinates describing a point in the element are

X, y and the fixed reference co-ordinates are a, B.

The vector of global co-ordinates of a typical point in the element,

X, is related to the vector of global nodal co-ordinates, X, by:-

x = [N] X (3.9)

where ([N], the shape function matrix, is a function of o and 8. The

strain rate vector € is defined:-

€
XX

YY

€ = € 1 (3.10)

(L] [N] X (3.11)

[B] X (3.12)

where [L] is the operator matrix:-



o glm

[L] = (3.13)

gl> g °
ge gle © Qe °

and X is the vector of global nodal velocities. Note that the strain

rate vector includes the rotation rate as well as the strain rates. This
proves to be a convenient way of including the Jaumann terms in equations

(3.5),(3.6) and (3.8).

The Cauchy stress rate vector, o is defined:-

c = o (3.14)

This stress rate vector is energetically conjugate to the strain rate
vector defined in equation (3.10) (note the zero entry in the position

corresponding to the rotation rate term in the strain rate vector).

The total strain rate may be decomposed into elastic and plastic

components in the same way as for the infinitesimal theory:-



e = &+ & (3.15)

where & is the elastic component, and & the plastic component. The

Jaumann stress rate is related to the elastic strain rate by:—

1 Qq

= p]° &° (3.16)

where (D]e is the elastic material incremental stiffness matrix:-

[ x4+ gg K - gg K - %9 0 o |
K - gg K + gﬁ K - %9 0 0
(p1° = K - ;E K - gg K + gg 0 0 (3.17)
o 0 o G 0
0 0 0 0 0

The plastic strain rates are derived from the plastic potential

g(o):—

P - gg (3.18)

where A is a scalar multiplier.

If f(o) = 0 is the yield function then:-

278 - o (3.19)

Substituting equations (3.15),(3.16) and (3.18) into the above expression

gives:—



T

B [ (e8] ] -
and:—
B
A = ~ T (3.21)
3] ©° 32

~ -~

Equations (3.15),(3.16) and (3.18) may be used to derive a relationship

between the Jaumann stress rate and the total strain rate:-

1 Qq

[ 22+ (0® | & (3.22)

(p1°P & (3.23)

If the Gauss point stress lies on the yield surface, then the plastic

stiffness matrix, [D]p, is given by:-

-01° (3] [g—jf (p1°

{D] = T (3.24)

If the stress point 1lies inside the yield surface then [D]p is set to

zero on the basis that the plastic strain rates are zero.

The rotation terms of equations (3.5), (3.6) and (3.8) may now be
included in equation (3.23) to give an expression for the Cauchy stress

rate:—

5 = [ (01%P + [R] ] é (3.25)

where [R] is the matrix:-



0 (o] 0 0 T
Xy
0 (o] (o] (o] -T
[R] = o] (o] (o] 0 (o] (3.26)
(o] o] (o] (o] E[cr - G ]
2L yY XX
{ (o] (o] o 0 (0] ]

Combining equations (3.12) and (3.25) gives:-—

¢ = [ 01%P + [Rr] ] [B] X (3.27)

The principal of virtual work may now be used to obtain a set of

nodal forces, P, that are consistent with the internal stresses in the

element: -~
P = Jf [B]T ¢ det[J] dx dB (3.28)
-~ E -

where [J] is the Jacobian of the transformation from global to reference

co—-ordinates.

Equation (3.28) may be differentiated to give an equation for the
nodal force rates as described in Section 2.2.3 (see equation (2.34)).
Substituting the expression for Cauchy stress rate (equation (3.27)) into

equation (2.34) gives:—

b = JJE[B]T[ (01%P+ [R] ] [B] X det(J] ax dp + JIE[C] X dadp  (3.29)

In order to evaluate the [C] (distortion rate) matrix, it is necessary to

expand equation (2.36) on a term-by-term basis. The resulting matrix for

3=7



the six-noded triangle is given in Appendix 3A, along with the other

finite element equations for this particular element.
The incremental element stiffness matrix is thus:-

K] = JJ'E[B]T[ (01%P+ [R] ] [B] det[J] da dB + ”E[C] dx dg (3.30)

This form of the stiffness matrix is similar to that derived from
infinitesimal theory, but with the addition of the matrix {R] to deal
with the effects of rotation, and the matrix [C] to deal with large

distortion effects.

In finite element computer codes, the stiffness matrix is invariably
calculated wusing a Gaussian quadrature scheme. In selecting the form of
integration algorithm to be used, careful consideration needs to be given
to the detrimental effects that element distortion can have on the
accuracy of the calculation. Gaussian integration schemes are only exact
if the determinant of the Jacobian is constant, thus the effect of mesh
distortion is to introduce errors into the calculation of the element

stiffness matrices (see Section 2.2.4).

In the calculations» described 1in this thesis, the distortions of
each element are monitored at each stage of the analysis using the
parameter , defined by equation (2.39), which is a measure of fhe
variation in the determinant of the Jacobian matrix over the element.
For those elements for which distortions are low (i.e. ¥y < 0.1 ) a three-
point Gauss rule, corresponding to 'exact® integration if the Jacobian is

constant, is used to evaluate equation (3.30). A thirteen-point rule is



used to integrate those elements that are known to become more severely

distorted during the analysis.

3.4 Material Self-Weight

The effects of material self-weight are included in this formulation
by first specifying the self-weight stresses (including the in-situ
lateral stresses) at each Gauss point in the mesh. A set of consistent
nodal loads are then calculated using the virtual work principal
(equation (3.28)), and these are applied to the nodes at the start of the

analysis.

3.5 Constitutive Laws

Two separate constitutive laws are required to model the behaviour
of clay and sand in the finite element formulation. Since the main
emphasis in this thesis is the exact modelling of large strain effects,
the constitutive laws have been kept deliberately simple to avoid undue

mathematical complexity in the formulation.

Ideal -elastic perfectly-plastic behaviour has been adopted for both
soil types. The £fill material is assumed to be sufficiently permeable
for zero pore pressures to occur during the loading in which case the
*total' and ‘'effective' stresses are identical. A ‘'total stress’
approach 1is adopted for the clay on the assumption that the loading on

the subgrade is sufficiently fast to give an undrained response.



The constitutive laws used in this thesis are derived on the basis
that elastic moduli remain constant during the deformation. Although
this is a convenient idealization, the use of variable elastic moduli
could lead to a more accurate description of the material behaviour
(especially for the sand). 1In deriving a theory in which elastic moduli
are not constant, however, it is necessary to use a rigorous thermo-—
mechanical approach to ensure that the derived material behaviour is
conservative. A theory of this sort has been developed for infinitesimal
strains (Houlsby (1985)), but this is not readily generalized to include

finite rotation effects.

The most common constitutive laws used in finite element models to
represent cohesive and frictional soils are the Tresca and Mohr—-Coulomb
models (e.g Griffiths (1982), Sloan (1981)). These constitutive laws,
however, contain discontinuous yield surfaces with ‘edges’' at which the
yield function is not differentiable. Although these singularities are
not often approached for plane strain conditions, they are important for
a number of problems involving axi-symmetric loading (Sloan (1981)).
These singularities are usually dealt with by ‘'rounding off' the corners
of the yield function which, although effective, is mathematically

inconvenient.

In the formulation described in this thesis, cohesive soil is
modelled by the wvon Mises yield criterion, and the Matsuoka yield
function (Matsuoka(1976)) is used as the basis of a plasticity model to
represent the frictional material. Both of these constitutive laws have
the advantage over the Tresca and Mohr-Coulomb models that they are
everywhere differentiable (except at the origin for the case of the

Matsuoka yield function). The relationship between these two sets of



yield functions is illustrated in Figure 3.1 which shows sections through
the vyield loci in the 'n' plane for the special case that they coincide

at the 'corners' of the Tresca and Mohr—-Coulomb surfaces.

492 =0,
Matsuoka Mohr - Coulomb von Mises Tresca
_g] _0.1
“O3 B

Figure 3.1: Comparison Between Yield sSurfaces

In order to compare the results of plane strain analyses based on
these two sets of constitutive laws, it is necessary to find correlations
between the material properties used in the corresponding models. The
plane strain cohesion, cps’ and plane strain friction angle, ¢ps' will

be used to obtain these relationships, and these are defined:-

Cos = _ (3.31)

Z —
tan™(o ) = (3.32)

where cl and 63 are the major and minor in-plane principal stresses

respectively. In this section, values of cps and ¢ps defined above are
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related to the equivalent values of triaxial compression shear strength,
c, and friction angle, ¢, that are used in the von Mises and Matsuoka
models. In deriving these relationships, which are restricted to the
case of plane strain 1loading, two separate conventions are used. The
stresses 1in a Cartesian frame are denoted Gxx’ ayy’ ozz and Txy, where 2z

is the out—of-plane direction, and the principal stresses are denoted o .

cz and 03 where GZ again denotes the out—-of-plane stress.

3.5.1 von Mises Plasticity

The von Mises yield function is defined as:-

- _ 2 _ 2 _ 2 2 2
f(g) = (oyy czz) + (oxx czz) + (cxx Oyy) + GTXY 8c (3.33)

where c is the shear strength of the material in triaxial compression. An

alternative form of the equation is:-

f(o) =  -6I} - 8c® (3.34)

where I; is the second invariant of the deviatoric stresses.

The plastic strain rates are derived from an associated flow rule
which gives zero plastic dilation rate and is therefore suitable for the

analysis of undrained clay. In equation (3.24), therefore, g(o) = £(o)

and the plastic material stiffness matrix is given by:-



(o' ) c' o' c' o' c' T (o]
plod XX VY XX 2z XX Xy
2
c' o (' ) c' o c' T (o]
Yy XX YY Yy 2z YY Xy
(p1P= 238| &' o c' o (o ) o' T 0 [(3.35)
ac? z2Z XX zz Yy 44 2z Xy
2
T ! T ! T ' T o
Xy Xx Xy YY Xy zz Xy
[ o 0 (0] o 0]

where the primes denote deviatoric stresses.

The associated flow rule may be used to show that, in the 1limit that
the elastic strain rates are negligible in comparison with the plastic

strain rates, then the principal stresses are related by:-

o = 3 (3.36)

If a Poisson's ratio of approximately 0.5 is chosen, then the strain
rates will be predominately plastic after the initial onset of yield. For

this case, the von Mises yield function reduces to:-

(crl - o) = — (3.37)

which may be combined with equation (3.31) to give a relationship between
the triaxial compression shear strength, c, and the plane strain shear
strength, c¢ 1=

ps

c = _2 o (3.38)



Equation (3.38) may be used to compare collapse loads calculated using

the Tresca and von Mises yield functions.

3.5.2 Matsuoka Plasticity

The Matsuoka yield function (Matsuoka (1976)) may be written in

terms of principal stresses:-

2 2 2
c -0 c —-¢0 o -0
( 5 3) ( N 3) ( N z)
f(0) = —~—m—2 § @ —_— 3y ==
- o © c O o C
2 3 103 12

- stan®(¢) (3.39)

where ¢ is the triaxial compression friction angle. Alternatively, in

terms of stress invariants:-—

(3.40)

- [9 + 8tanz(¢)]

As is the case with the Mohr—Coulomb plasticity model, the use of an
associated flow rule gives rise to an angle of dilation that is
unrealistically high. The usual soclution to this difficulty for the case
of Mohr—Coulomb plasticity is to use a non—associated flow rule in which
the dilation characteristics of the soil are specified independently from
the friction angle (e.g. Baker and Desai (1982), Zienkiewicz et al.
(1975)). This type of procedure has been used with considerable success
in previous finite element models based on the Mohr—Coulomb criterion,
and 1is adopted here to derive a plasticity model based on the Matsuoka

yield function.



The use of a non—associated flow rule does, however, have some
implications for the choice of solution algorithm. Firstly, the element
stiffness matrices are not symmetric, which means that the whole of the
global stiffness must be inverted rather than the more efficient process
of inverting only half of a symmetric matrix*. A further effect of using
a non-associated flow rule is that the general stability of the solution
algorithm tends to deteriorate as the difference between the friction and
dilation angles becomes large. This trend has been noted by Griffiths
(1982) for the Mohr—Coulomb model, and has also been observed in the

results of the collapse load calculations described in Section 6.9.2.

In deriving a mathematical model of material behaviour based on the
Matsuoka vield criterion for which the dilation characteristics may be
specified independently from the friction angle, it is useful to consider
first the two 1limits of behaviour, case 'A' in which the flow rule is
fully associated, and case 'B' in which the flow rule is associated in

the 'm' plane with zero plastic volumetric strain rate.

For case 'A', the plastic potential is identical to the yield

function and may be written in terms of stress invariants:-—

1 "2 (3.41)

In the 1large strain formulation described in this thesis, the
stiffness matrix 1is non-symmetric even if an associated flow rule is
used (see Section 2.2.3). It is therefore necessary in this case to
use a non-symmetric equation solver even if the flow rule is
associated.



where: -
¢ = 9+ stan’(o) (3.42)
from which the plastic strain rates may be derived using equation (3.18).

In order to obtain a relationship between the triaxial compression
and plane strain friction angles, it is necessary to consider the
limiting case in which the elastic strain rates are negligible in
comparison with the plastic strain rates. This implies that the out-of-
plane plastic strain rate is zero, which is a condition that may be used
to derive a relationship between the three principal stresses. This
equation, 1in conjunction with the yield function, may then be used to

obtain an expression for the plane strain friction angle.

For the case of full association, the flow rule may be used to
obtain an expression for the out-of-plane strain rate:-—
ag

A
= — = —— + -— .
Aacz I3 [ Iz IL(°1+ 63) 01034 } (3.43)

(XL e}

where A is a scalar multiplier. Equating this expression to zero gives a
relationship between the out—of-plane stress oz, and the in-plane
stresses ¢ and o :—
1 3
- 1/2
cz = (crl 03) (3.44)
The plane strain friction angle ¢ps is defined in equation (3.32).

This may be related to the triaxial compression friction angle, ¢, by



substituting equation (3.44) into the Matsuoka yield function (equation

(3.39)) to give:—
2 sec’(¢) = sec(e ) + secz(¢ps) (3.45)

A model of material behaviour for case 'B' may be obtained by
deriving the plastic strain rates from the deviatoric terms of the fully
associated plastic potential. In this case, the out—of-plane plastic

strain rate is:-—-

P _ 298 _ 183 _ 128
€2 T 3% 3 30, 3 30 (3.46)
= 11[ I1 - 302} + C[ Iz B 313/02] (3.47)

3I
3
In the 1limit that the elastic strain rates are negligible in comparison
with the plastic strain rates, then equation (3.47) may be set to zero to

give a relationship between the three principal stresses:-—

2

2 103 (3.48)
2
3

Substituting equation (3.48) into the Matsuoka yield function (equation
(3.39)) gives the relationship between the plane strain and triaxial

compression friction angles for the case of zero dilation:-

2 1 2
sec (¢ps) 1 + = 2 sec (¢)

{1 + sinz(¢ps)]1/z

(3.49)




The material behaviour for the case when the dilation rate lies
between these two extremes is obtained by taking a weighted average of
the plastic strain rates that give full and zero dilation. In tensorial

notation, the plastic strain rates derived in this way are:-—

(1 =7y) s 99 (3.50)
ij acij 3 i o,

where the repeated suffices imply summation, Bij is the Kronecker delta

and g(o) is the potential defined by equation (3.41). The variable Ya

may be considered to represent the ‘'degree—of-association’; for the case
when ya is unity the behaviour reduces to the fully associated case, and
when Ya is zero, the dilation rate is zero. This model of material
behaviour 1is incorporated into the finite element formulation described
in Section 3.3 by replacing the derivatives of the plastic potential in
equation (3.24) by the appropriate vector of plastic strain rates derived

from equation (3.50).

In order to relate finite element calculations based on the Mohr-
Coulomb model to analyses based on the Matsuoka yield criterion using the
flow rule defined Dby equation (3.50), it is necessary to relate the
Matsuoka parameters ¢ and ya to the angle of dilation and plane strain
friction angle used in the Mohr—Coulomb model. Unfortunately, closed
form equations relating these quantities cannot be derived except for the
limiting cases of 2zero and full dilation in which relationships can be

obtained that relate ¢ and ¢ps (see equations (3.45) and (3.49)).

A general correlation between the Mohr-Coulomb and Matsuoka

constants may again be obtained by considering the limiting case for the



Matsuoka model in which the out-of-plane plastic strain rate is zero.
The out-of-plane plastic strain rate may be derived from equation (3.50)

which, if equated to zero, gives the identity:-
3 2 2 2 3 3
~ — +
cz( 1 Ya)(°1+ 63) + oz[ (1 ya)(°1+ os) + ( 1+ Zya)(cr1 63)(0163) }
2 2 2 2 _
+ 2( l—ya)clcacz - ( 2+ya)01°3(°1+ 03) o (3.51)

Since in this general case it is not possible to obtain an expression
that can be used to eliminate cz from the Matsuoka yield function, a
numerical method must be used to calculate combinations of the parameters
¢, ¢ps and ya that are consistent with equations (3.51), (3.32) and the

Matsuoka yield function, equation (3.39). The plane strain dilation

angle is given by the definition:-—

(3.52)

sin( Wps )

k| M
w0 |wh

which may Dbe related to ¢ and ya by substituting for the plastic strain
rates using the appropriate terms of equation (3.50). Some selected
comparisons between the Matsuoka and Mohr—Coulomb parameters calculated

in this way are listed in Table 3.1.

In implementing this Matsuoka .model in a finite element computer
program, it is important to note that as well as the conical surface that
represents the 1l1limit of elastic behaviour, the Matsuoka yield function
defines additional surfaces that have no physical meaning. The surfaces
defined Dby the Matsuoka yield criterion are illustrated in Figure 3.2,

which shows the contours in the 'n' plane for which the yield function is
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Table 3.1:

d<

HOOOOO
O wOohd NO

d(

HOOOOO
O OO HNO

d(

= OO0OO0OO0OOo
OO HdNO

d(

HOO0OO0OO0OO
OO H NO

¢ = 20

17.71
17.61
17.53
17.46
17.42
17.41

00 0 0 0 O

() = 30

27.15
26.87
26.64
26.46
26.34
26.29

0O 00 0 0 O

37.02
36.55
36.13
35.77
35.51
35.39

0O 0 00 0 o0

42.10
4].54
41.02
40.58
40.22
40.06

0O 0 0O 0 0 O

0.0°
4.08
8.07
12.01
15.97
20.00

0O 0 0 0O

0.0

6.24
12.19
18.02
23.89
30.00

0 0 0 00

0.0

8.45
16.33
23.96
31.69
40.00

0 0o 0 00

Yps

0.0°

9.56
18.37
26.88
35.5%
45.0

o 0 0 0

Comparisons between Mohr—Coulomb and Matsuoka Plasticity

Parameters



zero. Note that zones exist for which the yield function is negative but
the stress state is not elastic. In calculating Gauss point stresses at
the end of the calculation step, care should be exercised to ensure that

the resulting stresses do not lie in one of these spurious zones and the

material subsequently treated as elastic.

-C.

f<0
o, -ve
g,,0, +ve
3
f<O
yield surface 0,,0,,04 - ve

f<0O
0'3-ve . O'1

g, 0'2+Ve
f<O
0-1 -ve
0'2,0'3 +Ve
FPigure 3.2: Matsuoka Yield Surface

A further consideration in any practical application of the Matsuoka
model described in this section is that a singularity exists at the
origin of stress space. When the stresses lie at this point the plastic
stiffness matrix is undefined, because the denominator of equation (3.24)
is zero. Since the origin may be considered to lie either on the yield
surface or inside it, the procedure used in this formulation is to treat

the Gauss point as being elastic if the stresses are zero.



APPENDIX 3A

Pinite Element Equations for the Six-Noded Triangle

Consider the iso—parametric mapping shown in Figure 3A.1 for the

six-noded triangular element.

Y 3

-
X

a

1 4 2
(0,00 (50 (1,0)

Reference Element Parent Element

Figure 3A.1: Mapping for the Six-Noded Triangle

The vector of global nodal co-ordinates of a point in the element is:-

be
X = (3A.1)
- Yy
and the vector of global nodal co-ordinates is:-
3 x.lL
Yl
%,
X = . (3a.2)
xs
Y
L 6




where xi' Yi are the global co-ordinates of the ith node. The shape

function matrix, as defined by equation (3.9), is of the form:-~

fl o fz f3 f4 fs f6
(N] = f o f o f o f o f o £ (3n.3)
1 2 3 4 s 6
where:—
fl=2(cx+[3—1)(<x+[3— 1/2) fz=2a(or—l/2)
f3 = 2B8(B - 1/2) f‘ = ~4ax(ax + B — 1) (3A.4)
£ = 438 £ = -48(x + B~ 1)
The 12 x 12 non-symmetrical [C] (distortion rate) matrix is:-
C 0 C € i iees e
1,1 1,2 1,3 1,12
c c c ciecaenans ‘e c
2,1 2,2 2,1 2,12
[Cc] = . . . (3A.5)
o] c’ Cenana et eaaaes . c
12,1 12,2 12,12
where: -
czi,zj = Txy det[Jij] i=1,6 3j=1,6 (3A.6)
czi,zj—1 = _oyy det[Jij] i=1,6 3j=1,6 (3A.7)
Coim1, 25 = O det[Jij] i=1,6 3j=1,6 (3A.8)
czi—l,zj—l = —Txy det[Jij] i=1,6 3j=1,6 (3A.9)



of
i

ox
af .
1
aB
and fi are the element shape functions.

det[Jij]

af .
3

da

af .
3

B

(3A.10)



CHAPTER 4 STRESS UPDATE CALCULATIONS FOR CONTINUUM ELEMENTS

4.1 Introduction

An important feature of the solution scheme described in this thesis
is that it is necessary to perform an equilibrium check at the end of
each calculation increment (see Section 2.4). This requires that the
stresses at each Gauss point be updated by evaluating an integral of the

form given in equation (2.41).

Three separate operations, in general, are needed to calculate the
updated Gauss polint stresses. Firstly, it is necessary to calculate the

strain rates € which, when integrated over the time step, are compatible

with the incremental displacements. This is achieved by obtaining a

solution to the differential equation:-—

e = (L] x (4.1)

where ({L] is the operator matrix defined by equation (3.13) and X is a

velocity vector at the Gauss point which 1is consistent with the
displacements occurring during the calculation step. Since the basis of
the finite element method is to calculate values of the primary variables
at discrete times during the loading, no information is available
regarding the way that these quantities vary during the calculation step.
In order to obtain a solution to equation (4.1) therefore, it is
necessary to make an arbitrary assumption about the nature of the

variation of either the velocities or the strain rates during the



increment. In the formulation described in this thesis, the assumption
is made that the strain rates remain constant during the calculation
step. This approach has the useful advantage that closed form solution

can be obtained for the strain rates (see Section 4.2).

The second stage of the 'stress update' calculation is to obtain the
incremental Gauss point stresses by integrating the constitutive
equations. In some cases (e.g. elastic behaviour, and von Mises
plasticity excluding the Jaumann terms), updated stresses may be obtained
from a closed form solution, but for the other types of constitutive
behaviour described in this thesis it is necessary to use a numerical

integration scheme.

The third, and final, stage of the 'stress update' calculation is to

correct the stresses back to the yield surface if a numerical scheme has

been used to integrate the constitutive law.

4.2 Calculation of Gauss Point Strain Rates

In order to calculate a set of strain rates, and rotation rate, that
are compatible with the incremental nodal displacements, the assumption
is made that the strain rates and rotation rates are constant for a
material point over the calculation step. The means that the velocity
gradients (gg etc.) also remain constant. In the region of each Gauss
point, the strain rates may be assumed to be spatially constant in which

case equations (3.1) and (3.2) may be integrated to give:-



co e B B
e [

where uo and vo are constants, and the higher order terms due to the

spatial variation of velocity gradients are neglected. Given that:-—

u = x and VvV = Yy (4.4)

then equations (4.2) and (4.3) may be re—arranged to give a differential

equation in X:—

X - [d +d }i + [d d ~-d._ad }x - d.v +d_u = 0 (4.5)
XX Yy XX'YY Xy ¥X Xy o Yy o
where:—
du u
% ay _ %ex dxy (4.6)
av av
x5 d9x  Yyy

Equation (4.5) may be solved to give an equation for x:-

dxy vo - dyy o (4.7)
d a -d (o}
xx yy Xy Yyx

X = Al exp(wlt) + AZ exp(wzt) +

where A1 and Az are constants, t is the time and:-

(d +4 ) = [(d -da_) + 44 o

]1/2
XX YY Xy ¥X

(4.8)




A similar solution exists for y:—

o XX o
y = Bl exp(wit) + BZ exp(wzt) + a 3 -3 3 (4.9)
Yy Xy ¥YX
where: -
AJ. AZ
Bl = a;y (wl - d_ ) and BZ = a;y (w2 - dxx) (4.10)

The velocity gradients may be calculated by considering the Jacobian

matrix of the transformation of the co-ordinates during the time step.

If xt, yt are the Cartesian co-ordinates of a material point at the start

t+At t+AL
I 4

of a calculation step, and x are the co-ordinates of the point

at the end, then the Jacobian of the transformation is:—

t+At t+At
ax X
- Tt D x ny
(3] = % % = (2.11)
t+AL t+AL D D
—_ YX YY
oxX ay

Equations (4.7) and (4.9) may Dbe used to obtain expressions for the
elements of the Jacobian matrix which, if the length of the time step is

normalised to unity, are:-

1]+

- (W -a_)e 2} (2.12)

D, = o {dxy(ez—el)} (4.13)



D = {dyx(e 2 _e 1)} (4.14)

- (w -a_)e ‘} (4.15)

The individual elements o©of the Jacobian matrix defined above may be
calculated independently by considering the geometry of the element at.
the start and finish of the calculation increment. Thus, from equations
(4.12) to (4.15), four simultaneous equations are obtained which may be
solved to give a set of strain rates and rotation rates which, if held

constant over the time interval produce the prescribed deformation:-—

&+ € = d + da
XX YY X Yy
= loge(det[J]) (4.16)
€ - € = a - d
XX Yy X Yy
= F(D}o{— Dyy) (4.17)
Y = d + d
Xy Xy X
= F (D + D 4.18
( Xy YX) ( )
26 = d - d
Xy Xy yxX
= F (D - D .
( Xy yx) (4.19)

The factor F depends on the value of the discriminant D where:-

D = (D__ - D + 4D _ D 4.20
( ) xy Cyx (4.20)

If D> O then:-



(D, * DYY) + D

log

F = (D + Dyy) = VD (4.21)

2 . .
(Note, no solution exists for the case D > (Dxx + Dyy) in which case

the Jacobian is negative.)

If D=0 then:-

P = 2 (4.22)
T~ (D__+ D_)
X Yy
If D < 0 then:—
et [
F = XX VY (4.23)
¥(-D)
4,3 Integration of Stress-Strain Laws

In the calculation of the updated Gauss point stresses, several
cases of constitutive behaviour need to be considered and these are dealt
with in turn. In addition, it is necessary to evaluate yield surface
intersections for the case when the material changes state during the

calculation step.

In this formulation, all stress increments are initially assumed
elastic, regardless of the initial state. If the resulting stress point

lies outside the yield surface, then the 'stress update' calculation is



repeated using the appropriate elasto—plastic constitutive law; thus the

possibility of elastic unloading is accounted for (Davis et al. (1974)).

The mean pressure p, and volumetric strain rate v are defined:-—

+ € .
XX vy zz XX Yy €2z (4.24)

o)
1]
Wl
~~
a
+
Q
+
a
S’
<
I
m
+
n

where the superior dot denotes a time derivative with reference to a
fixed Cartesian reference frame. Since the theory developed in this
section relates to the plane-strain case only, ézz is invariably zero.

Deviatoric stresses s, s__ and deviatoric strain rates e and e _ are
XX vy XX Yy

defined:—
s = o - e = € - 3 4,25
ww o xx P XX = XX 3 (4.25)
s = o__-p e = e - v (4.26)
YY vy yY Yy 3 )

In all of the solutions described in this section, the material
deformation is defined by the strain rates derived in Section 4.2, in
which the calculation increment is taken to occur during the time

interval 0 < t < 1.



4.3,1 Elastic Behaviour, Including Jaumann Rotation Terms

The mean pressure at time t is given by:-

P = p, + K vt (4.27)

where p° is the mean pressure at time t = 0 and K is the bulk modulus.
The constitutive equation relates strain rates to Jaumann stress rates
which, for elastic behaviour gives the following relationship between the

deviatoric components:-—

g = 2G e (4.28)
XX XX

v .

s = 26 e (4.29)
vY Yy

y = Gy (4.30)
XY Xy ’

where G is the shear modulus.

The deviatoric forms of the Jaumann stress rates given in equations

(3.5), (3.6) and (3.8) are:-—

v . .
Sex = Sex zrxy exy (4.31)
g = s __+ 2r_ 6 4.32
vy vy XY XY (4.32)
Y o= 7+ 6. (s - s_) 4.33
Xy Xy Xy XX vy (4.33)



Equations (4.31), (4.32) and (4.33) may be solved using the constitutive
equations, (4.28), (4.29) and (4.30) to give a solution for the

stresses:—

s = 26e_t 4+ s (4.34)
a a ao

s, = 5, .Cos(2ut) + zcéb[fiﬂééﬂfl] + 27 sin(zet) + zc&xy[l = ng(zwt)} (4.35)
Ty = T, Cos(2uwt) + G&xy[gzﬂééﬂfl] - %sbosin(Zwt) - Géb[l - gzs(Zwt)} (4.36)
where:—

S, T St Sy éa = éxx + éyy (4.37)

Sy T Syx T Sgy éb = éxx - éyy (4.38)

w = éxy (4.39)
and sao, sbo, T are the values at the start of the calculation step.

wWwhen the rotation rate is very small (i.e. w - 0), the use of equations
(4.35) and (4.36) could lead to significant 'roundoff' errors since the
evaluation of these expressions involves dividing by the rotation rate.
In this case, expanded equations in which the rotation terms appear only
in the numerator should be used to avoid this difficulty. If an
expansion 1is used in which only the first order rotation terms are
retained, then equations (4.35) and (4.36) reduce to:-

2

sb = sbo + 2G eb t 4 470 wt 4+ 2G yxy wt (4.40)



T = T 4+ Gy_t - s_wt - Ge_wt? (4.41)

4.3.2 von Mises Plasticity, Jaumann Terms Excluded

A closed form solution exists for the case of von Mises plasticity
when the Jaumann terms are not included (Booker (1984)). Although this
solution is not applicable to the general large strain case, it may be
used to solve problems where material rotation does not occur ( for
example the cavity expansion analysis described in Section 6.8), and to
check the numerical scheme described in Section 4.3.3 for the special

case when the rotation rates are zero.

The volumetric behaviour is always elastic and the mean pressure may
be derived from equation (4.27). The solution for the deviatoric

stresses is:-

SN T /e &+ s (4.42)
S0 T 2G éYY ¢ + 5o (4.43)
TXY n = G &xy ¢ + To (4.44)
where:—
£ = [%] sinh[gt] + [%} X cosh[gt] [%] X (4.45)
n = cosh[gt] + X sinh[gt] (4.46)
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2c (4.47)

v¥3
2 2 2 . -2 '}Z
B = 4G [exx + exx eYY + eYY + 4xy] (4.48)
20 B X = 2G [sxo(Ze + eyy) + syo(Ze + exx) + To Y ] (4.49)

and s, s_, To are the values of the stresses at the start of the

calculation increment.

4,3.3 von Mises Plasticity, Including Jaumann Rotation Terms

Since the solution described in Section 4.3.2 is not readily
extended to include the Jaumann rotation terms, it is necessary to use a
numerical method to integrate the constitutive law for the case of von

Mises plasticity when rotation effects are present.

The algorithm wused in this formulation is based on a Runge-Kutta
integration scheme in which the updated stresses are evaluated by
dividing the calculation step into a number of ‘'sub-increments'. 1In
order to improve the efficiency of this calculation, a procedure is used
in which the size of the ‘sub-increments' are varied automatically in
order to perform the integration at each of the Gauss points to a
specified accuracy. In this algorithm, which is described by Sloan
(1984), an estimate 1is made of the errors occurring at each ‘sub-
increment'. The magnitude of the error is then used to determine the
size of the following 'sub-increment', or, if the error is unacceptable,

the size of the sub-increment is reduced, and the calculation repeated.
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4.3.4 Matsuoka Plasticity

No Xknown closed form solution exists for the ‘stress update’
calculation in which the constitutive 1law is based on the Matsuoka
plasticity model described in Section 3.5.2. In this case, the
calculation is performed using the 'error control' algorithm described in

Section 4.3.3.

4.4 Calculation of Yield Surface Intersections

For the case when the material becomes plastic during the
calculation step, it is necessary to find the point in the increment at
which vyield surface intersection occurs. The increment is then split
into two parts and the 'stress update' calculation for the elastic and

plastic parts performed independently.

4.4.1 von Mises Plasticity

The elastic equations derived in Section 4.3.1 may be combined with
the von Mises yield function (equation (3.33)) to give an equation that
defines the time t at which intersection with the von Mises yield locus

occurs: —

X 2
(1 - cos(zut)) , , sin(zet) _ 16c°
w? ° N ’

A + At+ Ati+ A
1 2 3 4



where the constants A1 to As are defined in Appendix 4A. For the case of

small rotation, this equation reduces to:—

2
A+ (A, + 2ROt + (A + 2A)t = (4.51)

The above equation may be used to calculate the time, t, at which the
yield surface intersection occurs for the case when the rotation rate is
very small. For the general case, an approximate solution to equation
(4.50) is obtained from equation (4.51), which is then refined using a

Newton—-Raphson iteration scheme.

4.4,2 Matsuoka Plasticity

The Matsuoka yield function (equation 3.39) may be re—cast in the

form: -

¢I, + PI,(L-3) + PP (4-9) = 0 (4.52)

where ¢ 1is defined in equation (3.42) and p, the mean pressure, is

defined in equation (4.24).

From the elastic equations derived in Section 4.3.1 for the case

when rotation effects are absent:-—
. _ 2 3
13 a° + al (2G6t) + az (2Gt) + a3 (2Gt) (4.53)

_ 2 3
PI; = b_+ b (26t) + b (26t)" + b_ (26t) (4.54)
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3 2 3
p = co + c1 (2Gt) + c2 (2Gt) + c3 (2Gt) (4.55)

where the constants in the above expression are defined in Appendix 4B.

If the Jaumann rotation terms are excluded, therefore, an exact
solution to the yield surface intersection may be obtained by solving the
cubic equation defined by equations (4.52) to (4.55), taking care to
select the appropriate root. For the case when the Jaumann rotation
terms are included, the 2zero rotation case is used to give an initial
estimate of the intersection which is then refined using a Newton-Raphson

iteration scheme.

4.5 Yield sSurface Correction

In any numerical integration scheme used to perform ‘stress update*
calculations in the plastic regime, the possibility exists that the final
stress state will not lie on the yield surface within acceptable bounds.
The wusual practice 1is to deal with these offending stress states by
correcting them back to the yield surface. The choice of correction
algorithm is largely arbitrary, and generally has little effect on the
results of the calculation if an accurate scheme is used to perform the

numerical integration of the constitutive law.

In this formulation, all stresses obtained by numerical integration
of the constitutive 1law are corrected if they lie outside the yield
surface at the end of the calculation step. In performing this
correction, the principal directions are kept fixed and any adjustment is

made to the values of the principal stresses. For the von Mises case,

4-14



the stresses are adjusted in a direction in stress space normal to the
yield surface. In the Matsuoka case however, this correction procedure
leads to severe mathematical difficulties that are avoided if the
stresses are adjusted in a direction normal to an ‘'expanded' yield
surface that passes through the uncorrected stress point. This means
that the direction of correction may be written in terxms of the known
stresses. A scheme of this sort is only suitable for cases when the
corrections are small, since if errors are large the possibility exists
that the normal to the 'expanded' yield surface does not intersect the

true yield locus as shown in Figure 4.1.

Expanded yield

surface
No intersection with
true yield surface
in this case
n .
~ True yield
surface
Figure 4.1: Matsuoka Yield Surface Correction
4.5.1 von Mises Plasticity

c c c .
If (01’ cz, 03) are a set of principal stresses that lie on the
yield surface, then a vector normal to the surface that passes through

this stress point is:-
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(o] C C C (o] C C
n= (205 ¢~ c%) a + (265 6% 6%y a + (26°- ¢~ %) a (4.56)
- 1 2 3 1 2 i 3 2 3 1 2

3

. . . . . c o]
where a , az, a3 are unit vectors in directions corresponding to cl, oz

~ ~ -~

and o:. If (01' oz, 03) are a set of stresses that lie outside the yield

surface, then the corresponding corrected stresses are:-

g = 4+ An (4.57)

where A is a scalar. Substituting equation (4.57) into the von Mises

vield expression (equation (3.33)) gives:-

c + o + ¢©
2 3

oy + (X~ 1) 3 (4.58)

where: -

X = 1+ 3A (4.59)

and I2 is the second invariant of the deviator of the uncorrected

stresses.

4,5.,2 Matsuoka Plasticity

The yield surface correction for Matsuoka plasticity is calculated
in a similar way to the von Mises case except that the correction is

performed in a direction normal to an expanded yield surface passing
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through the uncorrected stress point. The expanded yield surface is

defined by the friction angle ¢e where:—

R L gtan’(¢°)  (4.60)

The vector normal to the expanded yield surface is:-—

n = n a + n a + n a (4.61)

where al, a2 and a3 are unit vectors in the directions of the principal

axes, and nl, nZ and n3 are defined in Appendix 4C.

The corrected stresses are defined by equation (4.57) which may be
substituted into the Matsuoka yield function (equation(3.39)) to give a
cubic equation in the scalar multiplier, A:-

A + ax + AaAY + aAr’ = o (4.62)
[o] 1 2 3

where the constants Ao to A3 are defined in Appendix 4C.

It 1is possible that when stresses are small, one or more of the
principal stresses may be positive (i.e. tensile) if a numerical scheme
is used to calculate the updated stresses. In this case it is hot
possible to correct the stresses back to the yield surface using the
above approach since an appropriate expanded vyield surface does not
exist. This situation is dealt by correcting the stresses back to the

origin of stress space, a procedure that may be justified on the grounds
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that tensile stresses arise only when the magnitude of the stresses is

very small if an accurate numerical integration scheme is used.
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APPENDIX 4A

von Mises Yield Surface Intersection

Equation (4.50) defines the time, t, at which intersection with the
von Mises vyield surface occurs for an elastic stress increment. The

constants in this expression are:-—

2 2 2
A1 = 3sao + Sbo + 4T° (4A.1)
A = 126 s_ e (4A.2)
2 ao a
a = 126° &2 (4A.3)
3 a
A = 20G [27 e. - s ¥ ] + 2G6° ['Z + éz} (4A.4)
4 o b bo yxy 'yxy b :
A5 = 2G [ZTO yxy + sbo eb} (4A.5)
where: -~
s = s + s e. = e + e (4A.6)
ao Xo vo a X% vy
sbo = sxo - syo eb = exx - eyy (4A.7)

The deviatoric strain rates, éxx and éyy’ are defined by the procedure
described in Section 4.2, and sxo' SYO and To are the values of the

stresses at the start of the calculation increment.
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APPENDIX 4B

Matsuoka Yield Surface Intersection

(4.52) defines the time, t, at which intersection with the
The

Equation
for an elastic stress increment.

Matsuoka yield surface occurs

constants in this expression are:-

s
ao 2 2
ao = — [470 + sbo - sao] (4B.1)
4
sao éa 2
a1 = ea To + yxy To sao - —;— [ea sao— eb Sbo} - —: [sao - sb } (4B.2)
2 .
yxy . . ea . . sao -2 -2
= — 4 — — — — - .
aZ sao yxy To ea [ea sao b Sbo] [ea eb} (4B.3)
4 2 4
e
a =__a[e_é2_'z] (4B.4)
3 b Xy '
4
2 2
3 +
b = -p [sao+sbo 47] (4B.5)
[o} [}
4
2 2 2 .
. ) 52 { 3sao + sbo + 4T J Cp [3e sao + eb sbo N & . } (45.6)
2G :
N 4 ° 2 Xy
- (3e. 8. +e_s p
—Kv a ao b "bo ] o -2 -2 (4B.7)
b = + - —
2G [ ; yxy To . [Be + eb +
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b = ~Kv b Xy
3 2G (4B.8)
4
c = p° (4B.9)
o = B ’
2 Kv
= —_ 4B.10
cJ. 3 o 2G ( )
.2
Kv
= — 4B.11
, 3p, [ZG] ( )
.« 3
c = [KV] (4B.12)
3 |26
and:—
s = s + s e = e + e (4B.13)
ao Xo Yo a XX V'a'4
sbo = sxo - SYO eb = exx - eyy (4B.14)

The deviatoric strain rates, éxx and éyy' are defined by the procedure
described in Section 4.2, and sxo, syo and To are the values of the
stresses at the start of the calculation increment. The volumetric
strain rate, v, is defined in equation (4.24) and po is the value of the

mean pressure (also defined in equation (4.24)) at the start of the

increment.
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APPENDIX 4C

Matsuoka Yield Surface Correction

The normal to the expanded yield surface defined by equation (4.60)

is:—

n = n a + n a + n a (4C.1)
2 2 3 3

e
[(o -0c )z ~ 40 0 + 20 (0 +0 ) - 800 tanz(¢ )]a

2 3 2 3 1 2 3 2 3 S

+ {(o—c Y’ ~ 40 +20(c+0 )-80g tanz(qae)]a (4C.2)
1 3 13 21 3 13 o2 )

+ [(c - 0C )2 -~ 40 06 + 20 (0 + 0 )-8 0 tan2(¢e)]a
2 1 12 3" 1 2 12 .3

where 01, cz and 03 are are set of stresses that lie on the expanded

yvield surface.

The value of the scalar multiplier, A, that satisfies equation (4.57) for
the case of Matsuoka plasticity is defined by equation (4.62). The

constants in this expression are:-—

AO = GL(UZ 63) + crz(o‘L 03) + 03(61 az) gtan (¢)crlcrzc3 (4C.3)
[ 2 2
- - - 40 -—
Al b(cz 03) 203 + 201(02+ §3) 86263 tan (¢)]n1
[ 2 2
+ c - - 40 0_ + 20 + - .
‘( N 03) s 2 Z(ol 63) Bclo3 tan (¢)]nz (4C.4)
[ 2 2
-— _40- p—
+ L(cz 01) xoz + 203(01+ cz) 80102 tan (cb)]n3
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r 2 2
= - - + 2n -
2 (n2 ns) 4n2n3 2 1(nz+ ns) 8n2n3 tan (¢)]o1

[ 2 2
+ -(nl- n3) 4n1n3 + 2nz(nl+ n3) - snln3 tan (¢)]cz (4C.5)

L

[ 2 2
+ (nZ nl) 4n1n2 + 2n3(n1+ nz) - 8nln2 tan (¢)}63

2 2 2 2
= - - - - nnn .
A3 nl(nz ns) + nz(n1 n3) + n3(nl nz) gtan (¢) 1,0, (4C.6)

where nl, nz, n3 are the terms of the vector defined in equation (4C.2),
and ¢ is the triaxial compression friction angle defining the true yield

surface.
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CHAPTER 5 FORMULATION OF MEMBRANE ELEMENTS

5.1 Introduction

This chapter is devoted to a description of a formulation for one-
dimensional elements with zero bending stiffness. The finite element
equations, which are valid for displacements of an arbitrary magnitude,
are developed in a similar manner to the continuum element formulation
described in Chapter 3 in that an Eulerian description of deformation is
used, and the stiffness equations are derived using an iso-—parametric

approach.

The Eulerian description of deformation leads naturally to the use
of Hencky (or logarithmic) strain to define the material behaviour of the
membrane. The formulation described in this chapter has therefore been
based on a material that is 1linearly elastic with respect to this
particular strain measure. It should Dbe noted that the stiffness
equations derived using this approach will, in general, be different from
those derived for a material that is linearly elastic with respect to

some alternative strain definition.

The formulation described in this chapter is applicable to membrane
elements of arbitrary order and is therefore presented in a general form.
The specific equations for the case of the three-noded element are

presented in Appendix 5A.

In practical applications of the reinforced earth technique, either

flat sheets of material (i.e. geotextiles) or open grids (i.e. geogrids)



are generally used as reinforcement and it is important to make the
following distinction between the behaviour of these two +types of
materials. Under boundary conditions that ensure global plane strain
deformation, the individual ribs in a geogrid will actually deform in
plane stress, whereas a geotextile will deform in plane strain. In this
formulation, the reinforcement is considered to be a flat sheet of
material with the plane stress condition used to model a geogrid, and
plane strain conditions for a geotextile. The adjustment that needs to
be made Dbetween these two classes of Dbehaviour is indicated in the

description of the formulation.

This mathematical model does not allow slip to occur at the
soil/reinforcement interface. This is an accurate description when the
reinforcement 1is a geogrid which provides good interlock with the
surrounding soil, but a rather 1less satisfactory assumption for a
geotextile. This restriction means that the finite element solutions
presented in this thesis should be interpreted as relating specifically
to geogrids, or any other form of reinforcement which may be assumed to

be perfectly rough.

5.2 Strain Definitions

In order to develop the relationships between strain rates and nodal
velocities, consider a one—-dimensional iso-parametric membrane element
with N nodes. Each node has two degrees of freedom. The global co-
ordinates of a point in the element are X, y and these are mapped onto a

single reference co—ordinate «, as shown in Figure 5.1.



3
2
i
|— T L
1 23 N d X
Reference Element Parent Element
Figure 5.1: Mapping for Membrane Element

The vector of global co-ordinates of a typical point in the element,

X, is related to the vector of global nodal co-ordinates X, by:-

x = [N] X (5.1)

where [N], the shape function matrix, is a function of «.

Figure 5.2 shows the displacement of an infinitesimal portion of the
membrane during an infinitesimal time step dt. Cartesian co-ordinates

are denoted by X, y and u, v are the velocities in the x, y directions.

dx +dudt
Configuration at
time t+dt
dy +dvdt
©+de
dy —~~_Configuration
| S at time t
dx
Figure 5.2: Displacements in a Membrane




The fractional increase in length of the portion is:-

[(dx + dudt)z+ (dy + dth)z]l/Z _ [dxz + dyz]x/z

[ dxz + dyz ]1/2

- dxdu + dydv at (5.2)

ax> + dyZ

where higher order displacement terms are ignored. The longitudinal

Hencky strain rate, €., can therefore be written:—

L
dx du  ay av
. deL _ da da da dx (5.3)
L dat [95]2 + [gz}z
dao dax

where the superior dot denotes differentiation with respect to time.

Ifu-= [u] and x = [x] then:-
v Y

1] T r
(u') x (5.4)

(x" ) x"

where the primes denote differentiation with respect to ao.

From equation (5.1):-—
x' = [N']X (5.5)
also:—

u' = [N']U (5.6)



where U is the nodal velocity vector. Substituting equations (5.5) and
(5.6) into equation (5.4) gives:—
ol 3TN X

[ = (5.7)
xTeN TN X

In the rest of this chapter, the denominator of this expression will be
denoted by JZ, where J can be interpreted as representing the Jacobian of

the transformation from parent to reference co—ordinates.

It follows that:-—

UTIN' 1IN IX
J = = = (5.8)
J

thus equation (5.7) can be written in the form:-
e = 3 (5.9)
J

This equation can be integrated exactly over a finite time increment At

to give:-—
J
t+At
AeL = lo (5.10)
J
t
where AeL is a finite Hencky strain increment at a point, Jt+At is the

value of the Jacobian calculated at the end of the load step, and Jt the

value at the beginning.



5.3 Formulation of the Finite Element Equations

From the principle of virtual work:-

T =Jécdv (5.11)

where UT are a set of virtual nodal velocities, and éL is the compatible

longitudinal strain rate. P is the vector of nodal forces in equilibrium

with the longitudinal stress, GL, and the integration is performed over

the element.
The elemental volume 4V may be written as:-—
av = A J dax (5.12)

where A 1is the cross—sectional area of the membrane. Substituting

equations (5.7) and (5.12) into the virtual work expression gives:-—

vt N TN Ix
= = = o AJ ax (5.13)

JZ

!
)

Since this expression must hold for arbitrary velocities UT it follows

that: -

v TN I

P = —  * ¢ A dax (5.14)
- J L



Differentiating equation (5.14) with respect to time, and noting that

X = U, gives the rate equation:-—

Uoc Xo Xo_ J A
. L
P = [N*JTIN" ] L LZ + = A da (5.15)
- J J J JA

For a membrane deforming in plane strain and assuming that stresses
normal to the membrane are small compared to the in-plane stresses (i.e.
that the membrane is thin), the longitudinal stress rate &L is related to

the longitudinal strain rate by:-

5 = — (5.16)

E X?[N']T[N']U
= = PR (5.17)
(l-v ) Jd

where E 1is the Young's modulus of the membrane material, and v is the

Poisson's ratio.

The proportional area change can be written in terms of the

longitudinal strain rate:-—

A -V .
= = S— % (5.18)

Equation (5.15) may be re-written using equations (5.8), (5.17) and

(5.18) to give:—



P= [N']T[N'] N L == S A Uda (5.19)

c E c_v } XX?[N']T{N']
g La-vy) (1 - v)

J
E

Re—arranging the terms gives:-—

v "o pex e )T o [ 10t e 1w )T v 17 e}
= S 2= AUdx (5.20)
3 -
- J
E
where:—
E o_v
£ = - L (5.21)
1-° 1-v

For a membrane deforming in plane stress, then the longitudinal

stress rate is related to the longitudinal strain rate by:-—
6. = E € (5.22)

and the proportional area change is:-—

A .
T = =2v GL (5.23)

In this case it may be shown that the nodal force rate is given by an

expression of the form of equation (5.20), but with the modification:—
E = E-2vo (5.24)

The second term of the integrand of equation (5.20) may be written:—



cL{ [N']T{JZ[I] - [N']¥¥T[N']T}[N'] }AU (5.25)

where {I] 1is the identity matrix. This may then be re-—arranged as
follows:—
2 _ . T ... T _ [x' y'][ x' ][ 10 ] _ [ x' ][x' ¥']
J [1] (N ]ff (N'] = v’ 01 " (5.26)
2
Yl _xvyv
= (5.27)
2
_xlyl xv
= [2] x* x'T(Z]T (5.28)

where [2] is the matrix:-
0o -1
(2] = [ 1 o ] (5.29)

which represents a 90° anti-clockwise rotation. The rate equation thus

becomes:—

E N 1 0N X (e 17N ]+ o (1T 200 T e 1T 2T N

UAda  (5.30)

J3

which can be decomposed further into:-—

_ [[N']T[N']X [N']T[Z][N']X] E o TNyl | uaax
P = ) ) o T T . - (5.31)
- E L X' [N'][Z2][N"] J



The incremental element stiffness matrix may, therefore, be written:-

*T * *
<1 = [ (8177 (01" (B)" av (5.32)
E
where [D*] is the augmented stiffness matrix:-—

x
x E O
[p] = {0 °L] (5.33)

*x
and [B ] is the matrix:-

1 XN 1IN

) RS T S e
Equation (5.32) is a convenient expression for the incremental stiffness
equation for two reasons. Firstly it is cast in exactly the same form as
the usual small displacement equations, so that existing small
displacement software could be fairly easily modified to wuse this
formulation. Secondly, it is economical of computer time to evaluate the
single expression of equation (5.32) rather than the equivalent four

terms of equation (5.15).

In order to evaluate equation (5.32), it is necessary to calculate
the wvalue of A, the cross-sectional area of the membrane, at each of the
Gauss points. This is best achieved by updating the Gauss point areas as
the analysis proceeds. For plane strain conditions, equation (5.18) may

be integrated to give:-

loge[——-] = - —Y e (5.35)
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where Ao is the area at the start of the calculation step, A is the area
at the end and AeL, the Hencky strain increment, is given by equation
(5.10). For plane stress loading, the appropriate rate relationship is

equation (5.23) which is integrated to give:-

loge[—g—} = - 2v Ae (5.36)
[«

The [B] matrix generally relates a nodal velocity vector U to a

strain rate vector € in an equation of the form:-—

€ = [B]U (5.37)

*x
If this equation is expanded using the [B] matrix derived earlier, then

the resulting strain rate vector is:-—

x'ul + Y'vl
(5.38)

T M
I
G|

N

_Yvuv + x'v'

It is wuseful to consider the significance of the two terms in the new
strain rate vector. The first term represents the longitudinal strain
rate éL' from equation (5.4). The second term can be identified with
anti-clockwise rotation rate. The nodal force rate can therefore be
partly associated with longitudinal straining, and partly with element

rotation.

In general, it is necessary to use a numerical integration method to
evaluate the element stiffness matrix. It should be noted, however, that
severe element distortions can 1lead to excessive errors in this
integration, and that the accuracy may be improved by increasing the

number of Gauss points (see Section 2.2.4). In the computations
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described in this thesis, the three—-noded element has been used with a
three-point Gaussian integration rule (note that two Gauss points are
sufficient for the case when the Jacobian does not vary along the
element). To ensure that the element distortions do not become too large
for this integration rule to be accurate, the Jacobian variation
parameter, defined by equation (2.39), is monitored for each element as

the calculation proceeds.

The finite element equations for the specific case of the three-

noded element are given in Appendix 5A.

5.4 Stress Update Calculations

In order to perform a general equilibrium check at the end of the
calculation increment, it 1is necessary to calculate the updated Gauss
point stresses. This is achieved by integrating the appropriate
constitutive equations and is a considerably simpler procedure than the

equivalent calculation for two—dimensional elements (see Chapter 4).

For plane strain conditions, equation (5.16) may be integrated to

give: -

a = o + —_— A€ (5.39)

where GLO is the 1longitudinal Gauss point stress at the start of the

calculation increment, GL is the stress at the end and AeL is given by



equation (5.10). For plane stress 1loading the appropriate rate

relationship is equation (5.22) which is integrated to give:-

e} = o + E Ae (5.40)

Since this membrane element has zero bending stiffness, it is appropriate
to assume that it can sustain no compression since it would buckle. It
is also necessary to ensure that the possibility of tensile stresses re-
occurring during the analysis is accounted for. In this formulation
therefore, the first step in the 'stress-update' calculation is to
compute the updated Hencky strain (from equation (5.10)). If this is
positive, then the updated stress is calculated using the appropriate
elastic relationship. If the Hencky strain is negative, then the Gauss

point stress is set to zero.

5.5 Calculation of Interface Stresses

In order to investigate the mechanism of reinforcement in an unpaved
road it is necessary to calculate the stresses acting at the interface of
the reinforcement and the surrounding soil. In this thesis, the
interface stresses are calculated from the nodal forces that are
consistent with the internal stresses in the neighbouring continuum

elements.

Consider the edge of the six—noded continuum element with normal
stress p, and tangential stress q shown in Figure 5.3. If Fix is the
force at node i 1in the X direction equivalent to the stresses in the

element, then from the principle of virtual work:-



X
Local node
number i
Figure 5.3: Interface Stresses for the Six-Noded Triangle
P = J [q cos(®) - p 51n(e)] £, as (5.41)
similarly:—
Fiy = J [p cos(8) + q 51n(9)] fi ds (5.42)

where fi is the shape function associated with node i and the integration

is performed over the edge of the element.

For the case of the six-noded triangle, the nodal forces that are
consistent with the internal stresses may be used to define a linear
variation of interface stress along each element side. Six nodal forces
act on any given element edge; two of these (corresponding to the mid-
side node) are associated with interface stresses acting on one side of
the element and the remaining four (corresponding to the corner nodes)
are associated with stresses acting on two sides. 1In order to calculate

linear variations of interface stress, it is necessary to compute the



proportions of the corner nodal forces that correspond to the stresses
acting on the element side of interest. This introduces a complication
into the calculation that is avoided if the mid-side nodal forces are
used to define a constant interface stress, which is the approach used in
this formulation. On this basis, the relationship between the interface
stresses and the forces associated with the node at the mid-side of the
edge is:-—

2 2
F, (X. - X.)° + F (Yj—Yi)

g = 3 X3 1 Xy (5.43)
2 X, XY+ (Y. -Y.)
(X i 3 i
2 2
p = 2 Dey™y TFs) 7 Py T ) (5.44)
2 2 2
(X = X)T + (¥, - ¥)

It should be noted that this approach does not evaluate correctly
the component of interface stress due to material self weight. This
simple method has been adopted in this thesis, however, on the basis that
in the reinforced unpaved road the effect of material self weight on the

soll reinforcement interface stresses is negligible.



APPENDIX SA

Finite Element Equations for the Three-Noded Membrane Element

Consider the iso-parametric mapping between the parent and reference

elements shown in Figure 5A.1.

Y
2
3
1
1 3 2
Ma —
(-1,0)  (0,0) (1,0) X
Reference Element Parent Element
Figure 5A.1: Mapping for Three-Noded Membrane Element
The vectors x and X appearing in equation 5.1 are defined as:-
[ X
1
Y
X 1
X = X = xz (5A.1)
Y Y2
X
3
Y

where xi, Yi are the global co—ordinates of the ith node. 1In this case

the shape function matrix is:-

(5A.2)

where:—



-
fl = -—2(1 bt CX) £ =

[o 4
2 ‘2—(1 + a)

x
The matrix [B] defined by equation (5.31) is given Dby:-

xlfl ylfi x!fi Y'f'
[B]* - 1 1 2 2
-y f1 b 4 fl -y fZ X fZ
where: -
2 2 2
J = (x') + (¥)

£.= (1+a)l- o)

X f3 y'£

-y f3 X f3

and the primes denote differentiation with respect to a.

5-17

(5A.3)

(5A.4)

(5A.5)



CHAPTER 6 VERIFICATION OF THE FINITE ELEMENT PROGRAM

6.1 Introduction

In any calculations involving computational methods, it is important
that the mathematical formulation and the corresponding computer code be -
rigorously checked against tast problems which have Known solutions.
This procedure is of added importance for the large displacement
calculations presented in this thesis, since predictions are made that
fall well outside the usual scope of finite element analysis of problems

in Soil Mechanics.

In addition to acting as a general check on the correctness of the
computer code, a systematic study of test cases such as these can give
a useful insight into the limitations of the numerical techniques and
models chosen for the analysis. The simple shear problem, for example,
which 1is described in Section 6.3, illustrates the limitations of the
Jaumann stress rate for large strain computations. The nature of the
Jaumann stress rate in the context of this particular problem is

discussed in greater depth in Section 2.2.2,

Three groups of teét problems are described in this section. The
first set of problems involve deformations that are homogeneous and have
closed form solutions even for the finite deformation case. This first
group includes finite compression, shear and extension problems for an
elasto-plastic continuum (Sections 6.2 to 6.5) and a large extension,
large rotation problem for a plane strain membrane (Section 6.6).

Secondly, the results of a large strain cavity expansion analysis are



presented. This is a rare example of a large strain problem which
involves non-homogeneous deformations but has a known analytic solution.
Thirdly, the results of a series of small strain collapse 1load
calculations are described. Since the analysis of an unpaved road is
essentially a large strain collapse problem, it is vital that the finite
element formulation is first used to make a study of the small strain

cases in order to develop confidence in the large strain predictions.

The wusual tension-is-positive convention has been adopted in this
chapter, with the exception of the derivation of closed form solutions to
the compression problems described in Section 6.2 in which compression is

reckoned positive in order to clarify the presentation of the diagrams.

6.2 Finite Homogeneous Compression

The use of simple homogeneous deformation test problems to check the
implementation of large plane strain finite element formulations was
first suggested by Osias and Swedlow (1974) who presented a test case
involving finite homogeneous extension with zero initial stresses. This
test case was developed by Carter (1977) to include finite compression as
well as the effect of initial stress. 1In this latter work, a solution is
obtained for the elastic perfectly-plastic case, with the plastic

behaviour defined by a model based on the Mohr—-Coulomb yield criterion.

In this section, a series of finite homogeneous compression test
problems is described. Compression rather than extension has been chosen
for study since this is the type of behaviour that generally occurs in

problems in Soil Mechanics. The analytical solutions for elastic



material behaviour are the same as those derived by Carter (1977) and are
developed here to include the elasto-plastic case for both the von Mises

and Matsuoka plasticity models described in Section 3.5.

In all these test problems the responses are highly non-linear and
depend on the initial stresses. These non-linearities arise because of
the large displacement effects involved in these calculations and may be
understood in terms of a simple example. Consider a compression analysis
in which an initial lateral compressive stress exists and axial
compression is applied. As the axial 1length reduces, then for zero

change 1in the lateral force the lateral compressive stress must increase

thus introducing a non-linearity into the analysis. The behaviour
described by this analysis may well not be representative of any real
process, but this procedure is of considerable use in testing the finite

element formulation and the solution algorithm.

In all these homogeneous deformation calculations, the material has
a sdquare elevation at the start of the analysis. A symmetrical finite
element mesh consisting of four six-noded triangles formed from the
diagonals of the square is used as the basis of the numerical
calculation, This mesh is adopted instead of a simpler mesh consisting
of two triangular elements, since the asymmetry of this latter

arrangement can lead to inaccurate results.



6.2.1 Elastic Behaviour

In this calculation, increments of compressive force which cause

large deformations are applied to an elastic material.

Consider the square section of unit depth with initial compressive
forces in the x and y directions of Po and Qo respectively shown in
Figure 6.1. During the deformation, which occurs over a time interval T,

Qo is increased to Q but Po is held constant.
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Figure 6.1: Homogeneous Compression

The plane strain rate equations of elasticity are:-

E

Uxx = TEIUSTI:§33 [(l—v) Exx + v eyy} (6.1)
o ——E——[(l—v)é +vé} 6.2)
vy  (1+v)(1-2v) vy XX (6.
Integrating these equations with respect to time gives:-
cr"———:——E——[l—- log (A ) + v 1 A]+P 6.3
xx  (l+v)(1-2v) (1~v) ge( x) oge( y) TS (6.3)

o]



v = I [(1 v) loge(Ay) + v 1oge(Ax)] + Ig (6.4)

o]

where the extension ratios in the x and y directions, Ax and Ay, are

defined: -

T T

s - - c = - A .
_‘[ & at log (A) ana i &gy GE log (A)) (6.5)

If the force in the x direction is held constant, then:—
P =0 Al 6.6
y ( )

Substituting equation (6.6) into (6.3) gives:-—

Po (A, - 1)

A, = exXp b4 - lfu loge(Ay) (6.7)
73 Aylo(l—v)
where: -
E
RS F TR (6.8)
Given that @Q = nyloAx' equations (6.4) and (6.7) together define the

relationship between Q and Ay. This relationship is plotted with the
results of finite element calculations for the same problem in Figure
6.2, for three different values of Po' In the finite element
calculations, prescribed displacements were applied to the upper boundary

in such a way that the increment of (1/Ay) was held constant ot 0.28 for



each calculation step. Figure 6.2 shows that in this case, the numerical

and analytical sclutions are almost identical.
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Figure 6.2: Homogeneous Elastic Compression
6.2.2 Elastic Perfectly-Plastic Behaviour: von Mises Plasticity

Consider again the initially square section of Figure 6.1. In order

to o©obtain a simple analytical solution to the homogehecus compression

problem for the elasto-plastic case it is necessary to ensure that the

elastic strain rates are zerc after yielding has occurred. For the case

of von Mises plasticity with an associated flow rule, this condition is

cnly satisfied if the Poisson's ratio is 0.5 (see Section 3.5.1), Since

the Peoisson's ratio cannot be set exactly to 0.5 if the bulk modulus is

to remain finite, a slightly lower value must be used which means that in




the finite element solution the condition of zero elastic volumetric

strain is only approximately satisfied.

In the test calculation described here, the square section is
initially stress free and is loaded in the y direction only. The elastic

rate equations, therefore, reduce to:-

oxx =0 (6.9)
& = E S € (6.10)
Yy 1—v Yy

c_=vo (6.11)
zz vy

Integrating equations (6.9), (6.10) and (6.11) gives:—

cxx =0 (6.12)
(e =-E log (A.) (6.13)
YY 12 ey

c = v (6.14)
zZ vy

where the extension ratio-Ay is defined in equation (6.5). Substitution
of equations (6.12) and (6.14) into the von Mises yield function

(equation (3.33)) gives the value of cyy at which yield will initially

occur:—

g = (6.15)



If the Poisson's ratio is taken to be 0.5, then in both the elastic
and plastic regimes the extension ratios are related by the constant

volume condition:—

= 6.16
Ax A 1 { )

Q=0 Ax 1 (6.17)
Thus in the elastic regime from equations (6.13), (6.16) and (6.17):-

Q =~ —— log_(A_) (6.18)
Y

and in the plastic regime, from equations (6.15), (6.16) and (6.17)

(taking the positive solution in equation (6.15)):—

_ ac
T /3 A

(6.19)

The relationship between Q and Ay, defined by equations (6.18) and
(6.19) is plotted in Figure 6.3 for three different values of (E/c). The
results of finite element calculations, in which a Poisson's ratio of
0.495 1is used to approximate the incompressibility condition, have been
plotted for comparison. Since the condition of zero elastic volumetric
strains is only enforced approximately in the finite element
calculation, the agreement with the analytical relationship is not exact.
The effects of this approximation are most apparent for E/c = O

(corresponding to an infinite strength) which is to be expected since in



this particular calculation the material behaviour is wholly elastic. As
E/c increases, the response becomes dominated by plastic behaviour for
which the incompressibility condition is enforced exactly in the finite
element solution thus the errors are reduced. 1In spite of the fact that
in this case the finite element solution is inexact, this test does act

as a general check on the implementation of the von Mises model.
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Figure 6.3: Homogeneous Compression, von Mises Plasticity
6.2.3 Elastic Perfectly-Plastic Behaviour: Matsuoka Plasticity

In this test problem a square element having initial compressive
stresses 1is sheared by imposing additional tensile forces in the y
direction. For the case when the in-plane compressive stresses are equal

and the out-of-plane stress is given by the elastic plane strain

condition then:—

o =g (6.20)



6. =g (6.21)

yo o
(o] =2v 0O (6.22)
Z0 [+}
where o6, © and o are the initial stresses in the X, y and z
Xo yo Zo

directions and co is a constant. If a tensile force increment is applied
in the y direction with zero force increment in the X direction, then
from the geometry of Figure 6.1 and from equation (6.7), the extension

ratios in the elastic regime are related by:-—

o (A -1)
A = exp | =Y - 1= log_(A)) (6.23)
H A (1-V) ¥
b4
and the force in the y direction is:-
Q = ayy A 1o (6.24)

where Ax is given by eguation (6.23) and ny is obtained by combining

equations (6.23) and (6.4):—

v GO(A - 1)
6 = - b4 - =k (1-2v)log () (6.25)

Yy 1-v
A_(1-v
g1

In order to obtain a simple analytic solution for the
load/displacement response when the material has yielded, it is again
necessary to choose a set of parameters which ensure that the elastic

strain rates are zero in the plastic regime. For this to be the case,



the out-of-plane stress must Dbe the same function of the in-plane

stresses for both elastic and fully plastic behaviour.

The value of the out-of-plane stress when the deformation is plastic
is a function of the dilation characteristics of the model (sSee Section
3.5.2) and can only be obtained in closed form for the full association
or the 2zero dilation cases discussed in Section 3.5.2. Since zero
dilation provides a more severe test of the formulation it is adopted

here for the purpose of this particular test problem.

For the in-plane stresses to lie on the yield surface:-

( cl + o)

o = —————E———i [ 1+ sin(¢ps)} (6.26)

(o + o)
c = —=_ 3 [ 1 - sin(e, ) ] (6.27)

3 2
where ¢ps is the plane strain friction angle and ol, 03 are the in-plane
principal stresses. Thus, from equation (3.48) the out-of-plane stress

for the case of zero elastic strain rate is:-

o? = [ ° 7 03]2[ P (0ps) - 2 ]2 (6.28)
P [ 1+ sin2(¢ps)]

For the out-of-plane stress to be the same function of stress ratio in
both the elastic regime at initial yield and the fully plastic regime,

the required Poisson's ratio is given by:-



I [ Sinz(¢ps) - 1]2 (6.29)
4 [ 14 sinz(¢ps)]

The Matsuoka plasticity model described in Section 3.5.2 is based on
the use of the triaxial compression friction angle to define the yield
surface. It is therefore necessary to use equation (6.29) in conjunction
with equation (3.49) to obtain a set of consistent values of v and ¢.

For the purposes of this example, the following parameters have been

chosen: -

If material parameters are chosen that satisfy equations (6.29} and

(3.49), then initial yield will occur when the stresses are related by:-

[1 - sin(¢ps)]

vy xx [1 + sin(¢ps)} (620

where in this case, since the force in the x direction is constant:-—

o = (6.31)

Equations (6.31), (6.30), (6.25) and (6.23) can therefore be used to

calculate A(Y) (Y)
Y b 4

and A , which are the values of the extension ratios Ax
and AY at initial yield. Since the material properties are chosen to
ensure that elastic strain rates are zero after initial yield and that

the plastic wvolumetric strain rate is zero, the area remains constant



after yield has occurred. In the plastic regime therefore, the extension

ratios Ax and AY are related by the expression:-

NN § S N6 )

>y x Ny (6.32)

The in-plane stresses are given by equations (6.30) and (6.31), and the

force Q is given by the expression:-—

Q = oo[l _ sin(cbps)][ A;Y) )\;Y)] (6.33)
(,\y)2 [1 + sin(¢ps)]
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Figure 6.4: Homogeneous Compression, Matsuoka Plasticity

The analytical procedure described in this section may be used to
calculate the relationship between Q and Ay for this particular test

problem. This relationship has Dbeen plotted in Figure 6.4 for three



values of initial stress, and compared with the results of the

corresponding finite element calculations.

6.3 Finite Homogeneous Shear

This test case, first proposed by Osias and Swedlow (1974), is used
here to check the implementation of the Jaumann stress rate in the finite
element formulation. The simple shear test problem is also of
considerable interest in illustrating the 1limitations of the Jaumann
stress rate 1in large displacement computations, and in this context is
discussed in Section 2.2.2., The original solution to the simple shear
problem described by Osias and Swedlow (1974) was for the case of zero
initial stress. This solution is generalized in Section 2.2.2, and used

here to check the results of a finite element analysis of this problem.

The equations relating shear displacements to the in-plane stresses
derived in Section 2.2.2 (equations (2.28), (2.29) and (2.30)) are
plotted in Figure 6.5 for the case of zero initial stress and Figure 6.6
for the case when one of the initial stresses is non-zero. Finite
element solutions to these problems are superimposed on these plots. The
numerical solutions, which agree well with the exact curves, were
obtained by providing a total of 25 displacement steps to the initially

square element to provide constant increments of tan(y).
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6.4 Simultaneous Rotation and Extension: Elasticity

This test problem was used as an additional check on the
implementation of the Jaumann stress rate, and consists of the analysis

of an element of material that is simultaneously rotated and extended.

Displacements are imposed on the boundary of the square section
shown in Figure 6.7 such that sides A remain the same length, sides B
increase in length by a factorxr Ay and the section rotates through a
clockwise angle ©. The section is subjected to an initial force in the x

direction of PO.

T A
Fo
- {,|B B
IL_a
— o™ time t=T
Q
time t=0
Figure 6.7: Simultaneous Rotation and Extension

From equations (6.3) and (6.4), adopting the convention that tensile

forces are positive, the in-plane forces are given by:-—

o)
1]

JTARV) loge(}\y)lo}\y + POAY (6.34)

0
H

u (l—v)loge(Ay)lo (6.35)



where u 1is defined Dby equation (6.8). The relationship defined by
equations (6.34) and (6.35) is plotted and compared with the
corresponding finite element solution in Figure 6.8 for one particular

case of initial force.
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Figure 6.8: Simultaneous Rotation and Extension
6.5 An Elastic Unloading Test Problem: von Mises Plasticity

In this test problem, an element of material is first compressed and

then expanded, with a rotation superimposed on the deformation.

Consider a square section which has linear displacements prescribed

to the corners such that it is caused to rotate through 90° as shown in
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Figure 6.9: Simultaneous Rotation and Compression

Figure 6.9. The section retains its square shape during the deformation,
but in-plane stresses arise due to the changes in area. Clearly in this
case the two in-plane principal stresses are equal, and for the case of
von Mises plasticity, the plastic volumetric strains are zero. Since
after the first 45o of rotation the area of the section increases, this
test case may be used to check the finite element formulation under
conditions of elastic unloading by choosing material parameters for which

yielding occurs during the compression phase.

The elastic behaviour may be defined in terms of the mean pressure

and volumetric strain, and the deviatoric stresses and strains:—

P=KV (6.36)
S = 26 e (6.37)
s =2Ge (6.38)
Yy Yy



Jaumann terms are absent in these equations since the in-plane principal

stresses are equal.

For the case of 2zero initial stress, these equations may be

integrated to give:-

P=KvV (6.39)
s = 2G e (6.40)
xx xx

S = 2G e 6.41
vy 7y ( )

Substituting equations (6.40) and (6.41]) into the wvon Mises yield
function (equation (3.33)), and noting that in this case the in-plane
deviatoric strains are equal gives the position of the element at which

vielding will initially occur:-

loge {};] - g (6.42)

s_= s _ = =— (6.43)

and will remain constant while the deformation remains plastic. Thus, if
yield occurs during the first a5° of rotation (i.e. if 2c < G 1oge(2))
then the deviatoric stresses are given by equation (6.43) at the mid-
point of the deformation. As the rotation is continued, the section

expands and elastic unloading occurs. At the end of the deformation,



therefore, the in-plane deviatoric stresses may be obtained by
integrating equations (6.37) and (6.38), with the initial stresses given
by equation (6.43):—

2c

Sex = SYY =G loge(Z) -3 (6.44)

The mean pressure will, of course, be 2zero at the end point of the

calculation.

The finite element formulation has Dbeen checked using this test
problem, but since the numerical and analytical solutions are
indistinguishable when plotted, the results of these calculations are not

presented here.

6.6 A Membrane Element Test Problem

In this test problem, simultaneous rotation and extension is applied

to two plane-strain membrane elements as shown in Figure 6.10.

time t=0

=

Figure 6.10: Membrane Element Test Problem

6—-20



The membrane, which is initially horizontal and stress free, is
loaded centrally as shown in the figure. If the membrane is linearly
elastic with respect to Hencky strain, then the relationship between the
force F and the angle « is:—

v
-2EA —

F = ;—:—;2 [cos(a)]l—u sin(«a) loge{cos(a)} (6.45)

where Ao is the initial cross—sectional area of the membrane and E is the

Young's modulus of the membrane material.
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Figure 6.11: Membrane Element Test Problem

In the initial state the structure has zero lateral stiffness, thus
in the finite element calculation it is necessary to apply a series of
displacement increments to all the nodes in the structure at the start of
the analysis. As the membrane begins to deform, the lateral stiffness
increases and it is then possible to continue the analysis by applying

load increments to the central node only. In the analyses presented here



the size of the load increments was increased during the course of the
calculation to compensate for the increased stiffness of the structure as
a result of its deformation. Comparisons between finite element solutions
to this problem and the relationship defined by equation (6.45) are

plotted in Figure 6.11 for two separate values of Poisson's ratio.

6.7 Small Strain Elastic Thick Cylinder Analysis

A series of small strain elastic thick cylinder finite element
analyses using different finite element meshes are presented in this
section. The purpose o0f this series of calculations is to investigate
the effects of mesh topology on the quality of the calculated stresses
for this particular problem, and to use the results to choose an
appropriate mesh layout for the large strain cavity expansion analysis
described in Section 6.8. The small strain thick cylinder problem is not
a severe test of this finite element formulation, but it may be used to
illustrate the fact that wvariations in mesh topology can have an
important effect on the quality of the results when the material

behaviour is near incompressible.

Four meshes have been used in this study and are shown in Figure
6.12. In tpe finite element analyses, a radial displacement of 0.03 per
cent is prescribed to the inner boundary and the calculation of the Gauss
point stresses performed in a single displacement increment for Poisson's

ratio values of 0.3, 0.4 and 0.48.
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Figure 6.12: Meshes for Thick Cylinder Analysis




The quality of the principal stresses produced by the finite element

calculations are characterized by the r.m.s. error:-

' - 2 J./Z
r.m.s. error = % ( o'(r) o(r) 1

(6.46)
o®(r)

where o¢’'(r) is a Gauss point stress from the finite element calculation,

r is the radius of the Gauss point, ¢(r) is the exact value of the stress

at radius 1r calculated from elasticity theory and the total number of

Gauss points in n. The r.m.s. error for the radial stresses is plotted

in PFigure 6.13: the errors for the other two principal stresses have not

been plotted since these show identical trends.
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Figure 6.13: Errors in Radial Stresses

The results of this numerical experiment have several interesting

features. Firstly, in all cases the r.m.s error increases as Poisson's

ratio approaches 0.5. These errors arise because the incompressibility



condition imposes additional constraints on the nodal velocities, thus
reducing the number of 'free’ degrees—of-freedom in the mesh (see Section
2.3). A further feature of the results is that Mesh 1 performs rather
better than Mesh 2 and Mesh 3 in spite of the fact that it has a smaller
number of degrees—of-freedom. It is also clear from Figure 6.13 that the
rate of increase of r.m.s error with Poisson’s ratio is smallest for Mesh
1. These trends arise because the total number of kinematic constraints

imposed on the nodal velocities by the incompressibility condition are
reduced by virtue of the special arrangement of elements used in the Mesh
1. This effect has been reported by Nagtegaal et al. (1974) for the case
of the constant strain triangle and is discussed at greater length in

Section 2.3 of this dissertation.

Sloan (1981) shows that for an infinite number of six-noded
triangular elements with three-point integration, the total number of
degrees—of-freedom per element 1is four, and the incompressibility
condition imposes three constraints. The effect of increasing Poisson's
ratio from a low number to approximately 0.5, therefore, is to reduce the
number of free degrees—of-freedom by a factor of four. This implies that
as a general rule of thumb, an approximately incompressible analysis will
yield results comparable in quality to a compressible analysis only if
the element density is quadrupled. This trend is indeed observed in the
results presented here, Mesh 3, with nineteen elements, producing data at
low Poisson's ratio that compares with the high Poisson's ratio data

produced by Mesh 4, with seventy four elements.



6.8 A Cavity Expansion Problem: von Mises Plasticity

Compensating outer layer

64ag,

64ao

Initial internal radius ag

Figure 6.14: Mesh for Cavity Expansion

The analysis of plane strain cavity expansion 1in a von Mises
material is a rare example of a large strain problem with a known closed
form solution for the stresses. Since the analysis also involves non-—
homogeneous deformations it represents a severe test of the finite
element formulation. This problem has been studied theoretically by
Gibson and BAnderson (1961) for an elastic-perfectly plastic Tresca
material (with small strain in the elastic region) and by Sagaseta (1984)

for an elastic perfectly-plastic von Mises material using large strain



analysis throughout. This latter solution, which is summarized in
Appendix 6A, is used here to check the solution obtained from a finite
element analysis of this problem. The Sagaseta solution is for a
material that is incompressible in the elastic regime, and this feature
is approximated in the finite element calculations by using a Poisson's

ratio of 0.49.

In order to optimise the accuracy of the finite element calculation
it is desirable to avoid as far as possible the detrimental effects of
the additional Xkinematic constraints imposed by the incompressibility
condition., Since the cavity expansion problem described here is radially
symmetric, the shape of the elements is preserved during the calculation,
and it is possible to use special arrangements of elements to reduce the
effects of the incompressibility condition (see Section 2.3). With this
in mind, the mesh for the cavity expansion analysis is developed from the
special arrangement of elements that was found to be successful for the
small strain radial expansion problem described in Section 6.7 (see

Figure 6.14).

Since the Sagaseta cavity expansion analysis is based on a continuum
of infinite extent, it 1s necessary to add a correcting layer to the
perimeter of the mesh to simulate the infinite boundary. The outer edge

of this correcting layer is fixed and has material properties:-—

SE

v' =0.25 and E =E

where E is the Young's modulus of the inner mesh and the outer radius of

the 1layer is arbitrarily chosen to be twice the inner radius. Details of



the calculation of the material properties of the correcting layer are

given in Appendix 6B.

In the finite element solution presented here, an expansion ratio of
four is applied to the radius of the cavity and the calculation performed
in 400 displacement increments. The ratio (G/c) used in the analysis was
112 and six—noded triangular elements with a three-point integration rule

were used to represent the continuum.

Finite Element (Vv =0-49)

e Radial stress —— Sagaseta (1984) (Vv =0'5)
A x Axial stress .
6
Stress ¢ Hoop stress
3
5 -
4 -
3 —
2_.

Cavity at the
end of the expansion

| | T
05 075 alr 1-0

Figure 6.15: Results of Cavity Expansion

The results of the.calculation are plotted in Figure 6.15 and the
agreement with the Sagaseta solution is surprisingly good given that a
Poisson's ratio of 0.49 rather than 0.5 was used, and that the element
sides are curved which means that the three-point Gauss rule is
insufficient to calculate the element stiffness matrices exactly. Some
scatter of the results is apparent near the inner boundary (a/r = 1).

This 1is due to the fact that since the nodes on the inner boundary have



prescribed displacements this area of the mesh is heavily constrained.
It is 1likely that this scatter would be reduced if the calculation were

repeated using force rather than displacement control on this boundary.

A repeat of this finite element calculation in which an arbitrary
arrangement of triangles was used for the mesh resulted in a large
scatter in the results. The scatter could be considerably reduced by
using a 'selective' integration element based on the formulation
developed by Nagtegaal and de Jong (1981) in which three Gauss points are
used to integrate the deviatoric stress components and a single Gauss
point used for the mean stress. The use of a formulation that relies on
this type of integration scheme is not desirable for general large strain
analysis, however, since it may be necessary to 'over-integrate' those
elements that become heavily distorted during the analysis in order to
preserve the accuracy of the element stiffness matrices (see Section

2.2.4).

6.9 Small strain Collapse Problems

Finite element solutions to collapse problems have a well known
tendency to overestimate limit loads or in severe cases to show noc limit
load at all, even though one is known to exist (Toh and Sloan (1980),
Sloan (1s81)). This difficulty is associated with the finite
discretization involved in the analysis, and 1is exacerbated by
incompressible material behaviour. Since the analysis of an unpaved road
is a 1large strain collapse problem, it is necessary to check that the

proposed formulation 1is capable of predicting collapse loads for cases



where displacements are small before progressing to the large

displacement cases.

108
R 74
A
10B
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P
Figure 6.16: Mesh for Collapse Load Calculations

In all the calculations presented in this section, the mesh shown in
Figure 6.16 has been used. The analyses are displacement controlled, in
which the nodes at the base of the footing are constrained laterally for
the rough footing cases, and for the smooth footing cases these lateral
restraints are removed. The footing pressure is obtained simply by
dividing the sum of the vertical forces on the footing nodes by the

footing width.



A good review of the previous work in the area of collapse load

calculations is given by Griffiths (1982).

6.9.1 von Mises Material
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Figure 6.17: Collapse Calculation for a von Mises material

A collapse load calculation for a smooth footing resting on
weightless von Mises so0il has been performed, and the resulting
load/displacement curve is plotted in Figure 6.17. A large value of G/c
was adopted in order to ensure that the calculation approximated the
infinitesimal displacemenﬁ case. The analysis was performed in 150
vertical displacement increments to the footing base. A well defined
collapse load was obtained which slightly exceeded the theoretical value
of 2c(m + 2)/¥3 . (Note that the 2/y3 factor appears in this expression
to account for the difference between plane strain and triaxial
compression shear strength as discussed in Section 3.5.1). This error is

partly due to the discretization inherent in the finite element method,
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and partly due to the effects of the kinematic constraints on the nodal

velocities.

6.9.2 Matsuoka Material

Collapse load calculations involving smooth and rough footings on
frictional soil either with self-weight or surcharge have been performed.
The Matsuoka plasticity formulation described in Section 3.5.2 was used
to represent the soil, and a triaxial compression friction angle of
26.46° was used in conjunction with a 'degree of association’ of 0.6*.
These calculations correspond to a plane strain friction angle of 30o
(see Table 3.1). A Poisson’'s ratio of 0.35 was used, and the value of Ko

was taken to be unity in the calculation of the initial stresses.
An exact solution to Nq exists for both smooth and rough footings

(Prandtl (1921)) which may Dbe used to check the results of the finite

element calculation for the weightless soil with surcharge:-—-

N = tanz[ g + B2 }exp{ " tan(cbps)} (6.48)

For the case of a footing resting on a soil with self-weight, no

exact collapse load solutions exist. Hansen and Christensen (1969) have

The choice of dilation angle in this type of calculation is somewhat
arbitrary in this case since it has negligible effect on the value of
the computed collapse load.
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obtained approximate solutions using a slip line technique and Prandtl
(1%21) and Hill (1950) have proposed mechanisms that may be used to
obtain approximate collapse loads for 1rough and smooth footings

respectively.

The load/displacement curves obtained from the finite element
analyses are plotted in Figure 6.18 and the collapse load solutions -
described above are superimposed on the appropriate plots. For the
weightless case, the finite element collapse load exceeds the exact value
by an acceptably small amount. For the soil with self-weight, the finite

element solutions compare well with the approximate solutions.

An interesting feature of calculations of this sort is that as the
dilation angle is reduced, then the finite element analysis tends to take
longer, and becomes more unstable. This increase in solution time is due
to the use of a larger number of sub—-increments in the 'stress update’
calculation which is necessary to preserve the accuracy of the
equilibrium check. These instabilities seem to be dependent on the
difference between the friction angle and the angle of dilation, and have
also Dbeen observed by Griffiths (1982) who was unable to obtain stable
collapse loads using a zero dilation angle when the plane strain friction

angle exceeded 350.



APPENDIX 6A

Closed Form Solution for Cavity Expansion

(After Sagaseta (1984))

In the elastic region:-

or = Ir c A(n) (6A.1)
2
= - .2
o, Ir c [ An) + loge(l n) } (6A.2)
2
oe = Ir c [ A(n) + 2 loge(l -n) } (6A.3)
where:—
G
I =2 (6A.4)
Fl 2
2 a - ao
n = _—_— (6A.5)
2
r
le n4 ns na
AM) = t3 tg tigt .- (6A.6)

ao is the initial radius of the cavity
a is the final radius of the cavity
¥ is radius corresponding to the stresses Gr' oz and Ge

¢ is the triaxial compression shear strength

The position of the elasto—plastic boundary is given by:-

n, = 1-exp[ 2 ] (6A.7)



The stresses in the plastic zone are:-

2c
Ur = p + 7—3- (6A'8)
2c
06 = p - 73 (6A.9)
c z= o] (6A.10)

where p, the mean pressure, is given by:-

p = Irc[A(n) + loge(l - ni)] + 7%—0 1oge(n/nr) (6A.11)



APPENDIX 6B

Correcting Layer for the Cavity Expansion Problem

Consider a cavity of radius R in a continuum of infinite extent of
Young's modulus E, and Poisson's ratio v. If an internal pressure p is
applied, then for small elastic deformations under plane strain conditions,
the radial displacement is:-—

sr = Eﬁié_i_ﬁ) (6B.1)

For an outer correcting layer of internal radius R and outer radius kR,
whose outer edge is fixed, made from material of Young's modulus E' and
Poisson's ratio v', then the radial displacement corresponding to an
internal pressure p (again assuming small elastic plane strain

deformations) is:-~-

' . 2—
5 = PRI - 2v')1+ viykT-1) (6B.2)

r E'[l + k(1 - 2v')}

For the finite layer to be of equivalent stiffness to the infinite

continuum, then:-—

2 ' _ *
1+v _ (k=1 )(1+ vyl -2v') (6B.3)

E E' [1 + k%1 - 2v')]

This equation clearly does not give a unique set of values of E' and v' .
For reasons of computational accuracy it is desirable to choose a low value
of Poisson's ratio, thus suitable material properties for the correcting

layer are:

v —-— 5E . —
K =2 B o= 3 v' = 0.25 (6B.4)



CHAPTER 7 ANALYSIS OF A REINFORCED ROAD

7.1 Introduction

The application of this finite element formulation to the back-
analysis of a series of tests performed on physical models of the
reinforced unpaved road is described in this chapter. The primary
purpose of these calculations is to check the general validity of the
mathematical model by seeking to use it to reproduce the trends observed
in the experimental results. It 1is important to compare theoretical
predictions with experimental results in this way in order to assess the

general accuracy of the numerical calculations.

A series of model tests performed by ILove (1984) has been chosen as
a Dbasis for this study. These tests were all performed under carefully
controlled conditions and involved plane strain, monotonic loading only.
The author had considerable opportunity to observe this experimental work
at first hand and is therefore familiar with the materials and methods

used, and is satisfied as to the quality of the results.

A plastic grid reinforcement was used in these experiments, and this
would be expected to provide good interlock with the surrounding soil.
Since the assumption is made in the finite element model that zero slip
occurs at the soil/reinforcement interface, the formulation is well
suited to the Dback-analysis of the results of these particular
experiments. The general approach adopted in these calculations is to
use the soil properties measured in independent tests to furnish the

parameters for the finite element model. In cases where appropriate data



were not available, it was necessary to resort to a ‘'trial and error*

process to obtain the required parameters.

7.2 Model Tests Performed by Love (1984)
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Figure 7.1: Model Test Rig (after Love(1984))

All of the tests were performed at a nominal one-quarter scale using
the arrangement illustrated diagrammatically in Figure 7.1. The linear
dimensions were scaled down by a factor of four from the prototype, and

the shear strength and modulus of the clay scaled down by the same factor



in accordance with the modelling laws. The reinforcement used in the
model tests was a scaled down version of a proprietary geogrid in which
the linear dimensions of the grid were reduced by a factor of four, and
the stiffness . (force per unit width) reduced by a factor of sixteen. A
model granular f£ill was used in which the grading curve was a scaled down

version of the full sized material.

The clay subgrade was prepared by consolidating a kaolin slurry in
the test rig itself. Three different nominal clay strengths were used in
the tests, and these were obtained by using the appropriate consolidation
pressures. The consolidation process was arranged so that after the clay
had been allowed to swell and had then been trimmed by a small amount,

the final height of the block was 407 mm.

Two sets of experiments were performed on each clay sample. The
trimmed clay block obtained at the end of the consolidation process was
used for the first set, and a second series of tests was performed in
which the clay disturbed by the first set of experiments had been
removed, and the block trimmed +to a height of 207mm. The results of
these two sets of experiments demonstrated that the effects of variations
in the height of the clay block were relatively insignificant, and that

equal importance could be attached to both sets of results.

In addition to the clay blocks prepared for model testing, one
sample at each of the three nominal strengths was prepared with the sole
object of investigating the variations of strength and moisture content
with depth. The shear strengths were measured using a shear vane and the
results obtained by Love are reproduced in Figure 7.2. Since the clay

blocks were clearly non-homogeneous, the shear vane measurement made at



the arbitrary depth of 55 mm Dbelow the trimmed surface was used to

characterize the subgrade strength in the model tests.

0 5 10 15 20 Cu (kPa)
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Figure 7.2: Shear sStrength variation in Model Subgrade

(after Love(1984)

In the main series of experiments described by Love, a single
footing was jacked monotonically a distance of 50 mm into the model road
for both the reinforced and unreinforced cases. During these tests, the
load/deformation response of the footing was measured, and the subgrade
displacements were monitored using a photographic technique. Nine
combinations of fill thickness and subgrade strength were studied in this
series of experiments, and these are listed in Appendix 7A. 1In addition
to these single footing tests, one pair of experiments was performed by
Love in which a dual footing was 3jacked into the model road. The

conditions used in these tests are also listed in Appendix 7A.



Love also performed a series of experiments in which a single
footing was Jjacked directly into the subgrade. The purpose of these
subgrade—only tests was to compare the bearing capacity with the value
calculated from the shear vane measurements. A selection of these tests
has also been chosen for back—analysis (see Appendix 7A) in order to
obtain a correlation between the shear vane measurement, and the shear
strength of +the equivalent homogeneous clay block for use in the finite

element back—analysis calculations.

7.3 Choice of Material Properties

The following parameters are required for the finite element model:-
Clay Two elastic parameters
Triaxial compression shear strength

Unit weight

Reinforcement Modulus

Poisson's ratio

Fill Two elastic parameters

Triaxial compression friction angle
Degree of association

Unit weight

The methods by which these parameters were obtained are described below.



7.3.1 Clay Parameters

The rate of loading used in the model tests was sufficiently high
for the response o0f the clay to be predominantly undrained. A clay
Poisson's ratio of 0.49 was therefore used to approximate the

incompressibility condition imposed by this type of behaviour.

A clay density of 19 kN/ma, being the value measured during the

model tests, is used in all of the computations.

The remaining clay parameters, however, are not so easy to determine
since the soil properties are not constant with depth (see Figure 7.2)
whereas the material modelled by the finite element calculation is
homogeneous. This difficulty was resolved by performing a series of
back—-analyses of the subgrade-only model tests and using the results to
develop a correlation between the shear vane measurement and the strength

and stiffness of the equivalent homogeneous block.

In all of the finite element back-analyses of the subgrade-only
model tests, Mesh B was adopted (see Figure 7.3) to represent the clay
block. This particular mesh had been prepared for the reinforced unpaved
road calculation, and therefore consists of separate layers of elements
to model the clay and the fill. 1In these subgrade-only back analysis
calculations however, the clay parameters were assigned to the elements
in Dboth 1layers of the mesh, and the reinforcement stiffness was set to
zero. This means that the finite element solution is for a clay block of
total depth 450 mm, whereas in the model tests the depth was either
407 mm or 207 mm. Since the experimental results indicated that

variations in the depth of the clay block had little effect on the



load/deformation response of a footing on the surface, it is argued that

the use of Mesh B in this way is justified.
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Figure 7.3: Mesh B

The four subgrade-only tests performed by Love that have been
selected for back-analysis are listed in Appendix 7A. These particular
cases have been chosen because they involve each of the three nominal

clay strengths used in the model tests.

In order to develop a correlation between the vane shear strength
measured at a depth of 55mm below the fill surface, ssv' and the plane
strain shear strength of the equivalent homogeneous block, cps' the

following relationship is adopted:-—

c = K_ s (7.1)



The optimum value of Kc was found on a °‘'trial and error' basis by
comparing finite element predictions with model test results. Once Kc
had boeon ostablished in this way, it was treated as a constant for all of

the clay blocks used in the model test programme.

The variation of overconsolidation ratio (OCR) throughout the sample
is 1likely to be similar for each clay block. Since the ratio (G/cps) is
generally considered to be a function only of OCR (2ytynski et al.
(1978)), then a rational value of shear modulus for use in the finite

element computations, G, is given by:—

G —
— =1 (7.2)

where Ir is again varied to obtain the best comparison between the finite

element and model tests results, and subsequently treated as a constant.

The first few subgrade-only back—-analysis calculations were
performed using a three-point integration rule for each element in the
mesh. It was found, however, that the elements in the region of the
footing edge became too severely distorted (as indicated by the parameter
¢ defined in equation (2.39)) for the three-point rule to be used with
confidence to calculate the element stiffness matrices (see Section
2.2.4). These distortions became so severe that at large displacements
some of the elements began to inverf. In order to reduce the errors in
the computation of the element stiffness matrices, a thirteen-point Gauss
rule was used in all subsequent calculations for the elements in the
region of the footing (see Figure 7.4). As well as increasing the

accuracy of the stiffness matrix calculation, the use of a higher order



integration 1rule for these selected elements had the effect of improving

the general stability of the mesh.

Footing

Elements with
13 Gauss points

Elements with
3 Gauss points

Figure 7.4: Element Gauss Points for Subgrade—-Only Calculations

The values of the constants Kc and Ir that were found to give the

best correlation between the experimental and numerical results are:-

K = 0.9 I, = 31 (7.3)

This rather 1low value of Ir is a direct result of the large strains
occurring in the model tests. A comparison between the load/deformation
curves obtained from the finite element model in which the above values

of Kc and Ir are used, and the corresponding model test results is given

in Figure 7.5.
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As an example of the nature of the deformations that occurred in
these calculations, part of the deformed mesh obtained at the end of

calculation reference S3 is shown in Figure 7.6.
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Figure 7.6: Deformed Mesh at End of Calculation S3

7.3.2 Reinforcement Parameters

A series of tests on the reinforcement was performed by Love, from

which the following plane stress parameters may be obtained:—
Et = 28 kN/m v = 0.5 (7.4)

where E 1is the Young's modulus of the reinforcement material, and to is
the initial thickness. This value of Poisson's ratio implies that the

reinforcement material deforms at constant volume.
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7.3.3 Fill Parameters

It is wunfortunate that few data relating specifically to the fill
properties were obtained by Love. In view of this, the parameters were
selected by performing a series of back—-analyses of the reinforced
unpaved road model tests in which the fill properties were adjusted to
give the best fit with the experimental data. The £fill parameters

obtained using this approach are:-

E = 4000 kPa v = 0.35 ¢ = 32 y_ = 0.6 (7.5)

where the triaxial compression friction angle, ¢, and degree of

association, Yy are defined in Section 3.5.2. These parameters

correspond to plane strain friction and dilation angles of:-

¢ = 36 v = 22 (7.6)

The unit weight of the fill was taken to be 19 kN/m3 in all of the finite

element calculations.

7.4 Single Footing Calculations

Three separate finite element meshes, corresponding to the three
£fill thicknesses used in the model tests, were used to perform the
reinforced unpaved road back-analysis calculations for the single footing
case, and these are depicted in Figures 7.3, 7.7 and 7.8. The meshes are
of the same dimensions as the test rig and are divided into two layers

with the upper layer used to represent the fill and the lower layer the



clay. Three—-noded, three Gauss point membrane elements are placed at the
interface of these two layers to model the reinforcement. The continuum
elements generally have three Gauss points, except for those elements in
the immediate vicinity of the footing where distortions are likely to be

large and a thirteen—-point integration rule is adopted.

In all of these calculations, the analysis was displacement
controlled. Horizontal displacement of the nodes in contact with the
footing was prevented, thus the soil/structure interface was treated as
being perfectly rough. All of the calculations involved a total footing
displacement of 30 mm which was about the maximum that could be applied

before the mesh became too severely distorted for the results to be

meaningful.
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Figure 7.7: Mesh A
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Love performed experiments on nine combinations of nominal clay
strength and fill thickness with a single footing load, and these tests
are listed in Appendix 7A. Finite element back—analyses corresponding to
each of these tests were performed in which the material properties were
obtained using the procedure described in Section 7.3, and are listed in

Appendix 7B.

The results of these back—analysis calculations, grouped according
to £fill thickness, are plotted in Figures 7.9 to 7.11 in which the
load/displacement curves from the model tests are compared directly with
the finite element solutions. The numerical results clearly reproduce
the important trend observed in the model tests that the reinforcement
has an increasingly large effect on the load/deformation response as the

displacements increase. A further feature of both the experimental and
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numerical results is that subgrade shear strength governs the response
more strongly than the £ill thickness, especially in the reinforced
cases, The finite element predictions of the improvement in bearing
capacity caused by +the reinforcement are generally realistic for the
smaller £ill depths at large displacements. As the fill depth increases,
the correlation between numerical and experimental results becomes less
accurate which indicates that an oversimplified mathematical model has

been used to represent the fill.

The numerical solutions generally underestimate the initial
stiffness of the structure, but the correlation improves as the
displacements increase. A possible explanation for this behaviour is
that the fill material is in a dense state at the start of the test and
therefore would be expected to exhibit post-peak strain softening
behaviour. The 1initial response 1is therefore determined by the peak
friction angle with the residual angle becoming more dominant as
displacements increase. Since the Matsuoka model wused in this
formulation is based on a material that is elastic perfectly-plastic,

these variations in friction angle are not accounted for.

A further shortcoming of the numerical formulation which may have
some influence on the Yesults is that a set of constant elastic
parameters are used to describe the material behaviour, whereas it is
well accepted that the use of a shear modulus that increases with mean
effective stress gives a more accurate representation of the behaviour of
real soil (Houlsby (1985)). To the author's knowledge, however, no
theory exists that can be used to model this type of behaviour in a way
that ensures that the material is conservative for the case when strains

are large.



The subgrade used in the model tests had a marked variation of shear
strength with depth (see Figure 7.2), whereas a homogeneous subgrade was
used in the finite element model. Although a method has been devised
whereby the appropriate value of subgrade shear strength for use in the
finite element calculation may be obtained, this correlation is only
strictly valid for the particular depth of failure zone occurring in the
subgrade-only tests (see Section 7.3.1). Since the effect of the
reinforcement and £ill is to increase the depth of the failure mechanism,
it is 1likely that the shear strength used in the finite element
calculations gives rise to an underestimate of the overall strength of
the clay that is mobilised in the model tests. This would explain the
general tendency of the finite element model to underestimate the

strength of the road by an amount that increases with £ill thickness.

It was observed in the experimental work that the reinforcement had
a tendency to 'cut into' the clay subgrade. This type of behaviour was
particularly apparent for the weaker clay samples and changed the nature
of the reinforcement/soil interface from the ideal conditions assumed in
the finite element model. It is also possible (but unlikely) that the
reinforcement used in the model tests was not sufficiently rough to
provide full interlock with the surrounding soil, a factor not accounted

for in the numerical solutions.

As an example of the nature of the deformation computed using the
finite element model, the mesh obtained at the end of analysis Rl is

reproduced in Figure 7.12.
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Figure 7.12: Deformed Mesh at End of Calculation Rl

7.5 Dual Footing Calculations

One reinforced and one unreinforced test was performed by Love in
which a dual footing was used, with all of the other features of the test
rig being unchanged. The material properties used for these tests are
listed in Appendix 7A. The purpose of these experiments was to

investigate the effect of reinforcement on the behaviour of the model



road under conditions that were more representative of traffic loading

than the single footing case.

500 mm
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Figure 7.13: Mesh D

The finite element mesh used in the numerical study of these dual
footing tests 1is illustrated in Figure 7.13. In developing this mesh,
the intention was to keep the element densities similar to those used in
the single footing calculations so that the results would be comparable.
These analyses were again based on a perfectly rough footing, and were
performed Dby prescribing a total displacement of 30 mm to the footing
base. It was found to be necessary to use 200 displacement steps, rather
than 150 as used in the single footing calculations, in order to ensure
stability of the numerical algorithms used to perform the ‘stress update-’

calculations.
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Figure 7.14: Dual Footing Model Test Results and

Finite Element Predictions

The load/displacement curves for both theory and experiment are
plotted in Figure 7.14. These results differ from those obtained for the
single footing with the same fill thickness and subgrade strength, in
that the finite element solution underestimates the capacity of the road
for all values of displacement. An explanation of this result is that
the reinforcement has the effect of coupling the footing loads together
in such a way as to increase the depth of the failure zone thus
mobilising clay of a greater average shear strength than that assumed in
the finite element model. 1In the unreinforced case, the numerical and

experimental results are similar indicating that the footings are acting

independently. The deformed mesh at the end of the reinforced
calculation (i.e. footing displacement = 30mm) is depicted in Figure
7.15.
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APPENDIX 7A

summary of Tests Performed by Love (1984)

The tests were performed using the rig shown diagramatically in
Figure 7.1. Single or dual footings were jacked into the model road at

an approximate rate of 2.5 mm/s to a total depth of 50 mm.

In this summary of the conditions used in these tests, the following

nomenclature is used:—

ssv = Shear vane measurement made at a depth of 55mm below the
trimmed clay surface.

sn = Nominal clay strength

H = Fill thickness

The reference scheme adopted in this appendix is identical to that
adopted by Love. The units of shear strength are kPa, and £ill thickness

is given in millimeters.

Single Footing Subgrade-—-Only Tests

s ] s Reference

q

6.0 6.1 D2L
9.0 9.6 EIR
9.0 8.7 E2R
14.0 14.4 F1R



Single Footing Model Road Tests

pDual Footing Model Road Tests
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APPENDIX 7B

Parameters used in Pinite Element Calculations

The following parameters are common to all of the finite element

unpaved road back—analysis calculations.

(a)
(b)

(c)

(d)

The

Clay Poisson's ratio is 0.49
Fill parameters are:—

E = 4000 kPa, v = 0.35, ¢ = 32°, ¥, = 0.6

The reinforcement is treated as deforming in plane stress and
assigned the properties:-

Et_ = 28 kN/m v = 0.5

where E 1is the Young's modulus of the reinforcement material

and to is the original thickness.

Soil unit weight is 19 kN/m3 for both the fill and the clay.

remainder of the parameters used in the finite element

computations are listed below.

Single Footing Subgrade-Only Calculations

Ref, Mesh Clay Number of Corresponding
cps G calculation steps Model Test Ref.

S1 B 5.49 170 110 D2L

S2 B 8.64 268 110 E1R

S3 B 7.83 243 110 E2R

S4 B 13.00 403 110 F1R



Unpaved Road Back-Analysis Calculations

(a) Reinforced

Ref. Mesh Clay Number of Corresponding
cps G calculation steps Model Test Ref.

R1 A 5.31 165 150 AZM

R2 A 8.01 248 150 BIM

R3 A 13.70 425 150 ClM

R4 B 5.04 156 150 D2M

R5 B 7.65 237 150 EIM

R6 B 11.70 363 150 F2M

R7 Cc 5.22 162 150 G2M

R8 C 7.92 246 150 HIM

RS c 12.15 377 150 K2M

R10 D 5.76 179 200 MIM

(b) Unreinforced

Ref. Mesh Clay Number of Corresponding
cps G calculation steps Model Test Ref.

Ul A 5.40 167 150 AlM

U2 A 7.92 246 150 B2M

U3 A 11.43 354 150 C2M

U4 B 5.04 156 150 D1IM

US B 7.38 229 150 E2M

U6 B 12.00 372 150 F1M

u?7 c 5.31 165 150 G1M

U8 C 7.65 237 150 H2ZM

U9 C 13.30 412 150 K1M

Ulo0 D 5.49 170 200 M2M

Ull D 5.76 179 200 -

Ulz2 A 5,31 165 150 -

Notes

(1) All values of strength and stiffness given in this appendix are

quoted in units of kPa.
(ii) See Figures 7.3, 7.7, 7.8 and 7.13 for finite element meshes.
(iii) See Appendix 72 for parameters used in model tests.
(iv) Ull and Ul2 do not correspond to a model test but are repeats of

R10 and Rl in which the reinforcement is absent.
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CHAPTER 8 MECHANISMS OF REINFORCEMENT

8.1 Introduction

The back—analysis calculations described in Chapter 7 show that the
finite element model described in this thesis is capable of making
accurate predictions of the load/deformation behaviour of a reinforced
unpaved road under conditions of plane strain monotonic loading. This
finite element model, however, cannot be considered to be a practical
design tool in its own right since reinforced unpaved roads are generally
lJow cost structures and in most cases the use of sophisticated numerical

methods in design would be uneconomic.

The design of reinforced unpaved roads is currently based on simple
analytical models of behaviour and this practice is likely to continue.
The design models that are currently available, however, are generally
considered to be unsatisfactory since they are based on oversimplified
assumptions regarding the nature of thé reinforcement mechanisms. In
order to improve these analytical design methods, it is necessary to
obtain a better understanding of these mechanisms, and this can be
achieved, at 1least in part, by finite element analyses of the sort

described in this thesis.

In this chapter, the separate reinforcement mechanisms that have
been identified as a result of previous studies of the reinforced unpaved
road are described. The results of two of the finite element back-
analysis calculations described in Chapter 7 are then discussed in

further detail with a view to identifying the reinforcement mechanisms in



operation in these particular cases. The numerical solutions chosen for
this study are R10 (see Appendix 7B) which involves a dual footing, and
Rl which is the single footing calculation corresponding to the same fill
thickness and nominal clay strength. 1In order to provide a comparison
with the case where the reinforcement is absent, two additional
unreinforced calculations have been performed (Ull and Ul2 in Appendix
7B) in which the material properties are identical to those used in the

corresponding reinforced analyses.

The numerical predictions of reinforcement mechanisms described in
this chapter are limited to the case of a single or dual footing with one
combination of £ill thickness, subgrade strength and reinforcement
stiffness. No indication is given as to how the mechanisms might be

affected by changes in geometry or material properties.

8.2 Definition of Mechanisms

The reinforcement mechanisms that are generally considered to act in

a reinforced unpaved road are defined and described below.

(1) Membrane Effect

wWhen a wheel 1load is applied to the surface of the road, tensile
forces are set up in the reinforcement by the shear stresses acting at
the interface with the soil. If these tensile forces are coincident with
appreciable curvature of the reinforcement then the normal stresses in

the soil acting on each side of the reinforcement are unequal. This



effect tends to reduce the normal stresses transmitted to the subgrade

immediately underneath the load which increases the capacity of the road.

(ii) Restraint Effects

The reinforcement can restrain the displacements in both the £ill
and the subgrade in such a way as to increase the strength and stiffness
of the structure. Two such restraint mechanisms have been proposed and

these are defined and described below.

Effect A: wWhen the soil displacements Dbecome appreciable, the
reinforcement tends to restrain heave deformation of the subgrade on each
side of the load by membrane action associated with reversed curvature of
the reinforcement. The reinforcement therefore applies an additional
surcharge loading to the surface of the subgrade which increases the

vertical bearing capacity underneath the load.

Effect B: The reinforcement reduces the tensile strains at the base
of the fill, and this improves the load-spread action of the layer thus
reducing the magnitude of the vertical stresses at the fill base. This
particular mechanism depends critically on the roughness of the

soil/reinforcement interface and the stiffness of the reinforcement.

(iii) Reinforcement Against Local Failure

The reinforcement prevents the punching of the individual fill
particles into the subgrade, thus ensuring that a distinct boundary is

maintained between the soil layers.



(iv) Shear Stress Effect

In the unreinforced unpaved road, the fill layer transmits shear
stresses as well as normal stresses to the subgrade. These shear
stresses tend to reduce the vertical bearing capacity of the subgrade.
If a reinforcing 1layer is placed at the base of the fill, there is
evidence to suggest that these shear stresses are reduced thus increasing
the subgrade bearing capacity. The amount by which the shear stresses
are reduced is likely to depend on the relative stiffness of the
reinforcement and the surrounding soil. This effect is ignored in the
simple analytical design methods, but has been identified in the model
tests performed by Love (1984) and has also been predicted by various

finite element studies (e.g. Boutrup et al. (1983)).

8.3 Single Footing Analysis

The finite element calculation reference Rl described in Chapter 7
is discussed in greater detail in this section with a view to identifying

the reinforcement mechanisms in operation in this particular case.

The variation of reinforcement tension with position obtained from
this finite element calculation for footing displacements of 0.8B and
0.4B, where B is the footing half-width, is plotted in Figure 8.1. It is
clear from this diagram that as the footing displacement increases, then
the point of zero tension moves outwards and the magnitude of the tensile
forces increases with the general shape of the curve being preserved, It
is also noticeable that for both values of footing displacement the

maximum tensile force occurs at a point almost directly underneath the
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Figure 8.1: Reinforcement Tension and Displacement (Single Footing)

8-5



(burjo0d STHUTS) 90BIISIUI 03 TPEUION SISSVIJS :2°'g aanbtd

(2N "39y) GADYO4NITYNN ’
a/x 9 v 4 a/x 9 y
Y ¢ ? /o ! (o +e -numm.po W
\. /././
/. N
/0/0/.] m o/..l m
sd
0 <
-‘9 d -ﬁo_ U
IA+ __
OA+ M
90DJJ9lUl MO]3Q 3INSS3ld = e 90DJI3JUl BAOQD INSSVI = +
(1Y 494) Q30¥04NI3IN

a/x 9 g L0 a/x 9 Y z

R At

+

\ \
A \=r?
f—e—s—t —
/\\ e 2
+ - O— Cn_ - O— Cn_
g8:0=Q Y av-0=Q ‘




(butjood oTbuTs) 9ORIISJUI e SISSVIJS IeYS €'8 a2anbrd
(Zin 498) A3DHOANIFENN
— —.. —
S et I \/. I VR 2 e
a/x arx 7N s
/ \./ N — /\ S~ |
— N -
%
! b
A Lessssir
777777 oA+

30DJJ3JUl MO}3Q ID3YG = »

.f\w...l./\%f \

(1¥ 43¥y) d30404NI3Y

w_ P ————j 4

90D}I3}U] IA0OQD IDIYS = +

— T Nae\ ]

+/+J

g ¥ T

+

880=Q

a/x

Gr

pe—

-
ol
&

—_ / ./\P\

gy-0

=Q

/\

=




footing edge. This type of behaviour has also been predicted by Zeevaert
(1980) using an axi-symmetric finite element model, and has been observed

in the plane strain model tests performed by Gourc and Riondy (1985).

The vertical displacements of the reinforcement obtained from the
finite element calculation are also plotted in Figure 8.1, from which it
is clear that the point of zero vertical displacement moves outward
slightly as the footing displacement increases. This type of behaviour

was also observed in the model tests performed by Love(1984).

Since the slope of the reinforcement is zero on the footing centre-
line, the strain in the reinforcement at this point may be calculated
from the slope of the horizontal displacement, which is also plotted in
Figure 8.1. The gradients of the horizontal displacement curves agree
well with the reinforcement strain on the footing centre-line which

confirms the general consistency of the results.

The normal stresses acting on reinforcement for the reinforced
calculation, and on the fill/clay interface for the unreinforced case are
pPlotted in Figure 8.2. The 'membrane effect' is clearly evident in the
reinforced case since the normal stresses above the reinforcement exceed
those below in the area immediately underneath the footing. The
magnitude of this normal stress difference is small beneath the footing
centre 1line where the reinforcement'curvature is minimal, and reaches a
peak at a point roughly underneath the footing edge where both the
reinforcement tension and curvature are relatively large as indicated in
Figure 8.1. Outside the area immediately below the footing the sign of
the normal stress difference is reversed due to the reversed curvature of

the reinforcement. This increases the surcharge on the subgrade, and



corresponds to ‘'restraint effect A' defined in Section 8.1. It is
detectable in Figure 8.2 that the normal subgrade stress in the area
immediately underneath the footing is slightly greater for the reinforced
case which is at least partly due to this mechanism. These solutions
also show that in this case the reinforcement tends to reduce the width
of the loaded area at the fill base, thus it has a detrimental effect on
the mechanism of load spread. This is a surprising result, and contrary
to the usual assumption that the reinforcement improves the load spread

in the fill.

The shear stresses acting on the soil/reinforcement and fill/clay
interfaces obtained from this finite element calculation are plotted in
Figure 8.3 but are more difficult to interpret than the normal stress
results since they show marked variations along the length of the
interface. Some of these variations are almost certainly a result of the
discretization errors involved in the numerical model and have no
physical significance. It may be deduced, however, that the
reinforcement has the general effect of reducing the shear stresses
transmitted to the subgrade immediately underneath the load. (It should
be noted in making this comparison that the shear stresses are compared
for the same footing displacement, rather than footing load, which is
larger 1in the reinforced case). The results plotted in Figure 8.3 also
show that appreciable négative shear stresses act on the subgrade well
away from the footing when the displacement is large. These stresses
arise from the horizontal movement of clay displaced by the footing, and
are larger for the reinforced case since the reinforcement is able to

offer greater lateral restraint than the £ill layer.



The shear stress plots in Figqure 8.3 for the reinforced case are
consistent with the reinforcement tension plotted in Figure 8.1 in that
the points of zero tension and 2zero shear stress are approximately
coincident. For the larger displacement, the shear stress acting on the
reinforcement for 4B < X < 6B 1is slightly 1less than cps, which
corresponds well with the measured slope of the tension curve in Figure

8.1.

8.4 Dual Footing Analysis

The results of finite element calculation reference R10 (see
Appendix 7B) are described in further detail in this section. This
analysis involves a dual footing but is otherwise similar to the single

footing calculation described in the previous section.

The reinforcement tensions obtained from the finite element analysis
are plotted in Figure 8.4 for the same two values of footing displacement
studied in the single footing case. These curves show similar trends to
those obtained from the single footing calculation in that peak values of
tension occur roughly underneath the footing edges, and the point of zero
tension moves outwards as the footing displacement increases. A
comparison between Figures 8.1 and 8.4 show that the magnitudes of
reinforcement tension and displacement are generally larger for the dQual
footing case. The reinforcement displacements are also plotted in Figure
8.4 and are similar to those obtained for the single footing calculation,
except that the magnitude of the heave displacements is generally

greater.
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The normal stresses acting on the reinforcement are plotted in
Figure 8.5, and as was the case for the single footing results the
presence of the 'membrane effect' is clearly apparent. The results are
also similar in that immediately outside the loaded area the reversed
curvature of the membrane increases the surcharge on the subgrade. The
magnitude of this surcharge is greatest in the region between the
footings. This result is to be expected since the coupling between the
two 1loads tends to increase both the reinforcement tension and curvature

in this area.

The shear stresses acting on the reinforcement/soil, and fill/clay
interfaces are plotted in Figure 8.6 and as was the case for the single
footing calculation described in Section 8.3, the results show large
spatial wvariations. These errors arise from the general tendency of the
finite element method to produce solutions which have local erroneous
variations even though they are globally correct, and this figure is
included here in order to illustrate the limitations of this particular

formulation.



CHAPTER 9 TWO EXISTING DESIGN METHODS

9.1 Introduction

Several simple analytical methods have been proposed for the design
of reinforced unpaved roads, and these are reviewed briefly in Chapter 1.
T™wo of these design methods, namely those proposed by Giroud and Noiray
(1981) and Sowers et al. (1982), are discussed in greater depth in this
chapter. The design methods are first described in detail, and are then
each used to model one of the reinforced unpaved road tests described in
Chapter 7. The analytical models are compared with the experimental
results and the corresponding finite element back-analysis solutions in
order to assess the assumptions on which these simple design models are
based. The model tests chosen for this comparison correspond to the
single and dual footing finite element calculations described in Chapter
8. The Giroud and Noiray method, which models a dual wheel load, is
compared with the experimental and numerical results obtained for a dual
footing, and the Sowers method is compared with the single footing case

since it treats each wheel in isolation.

9.2 Giroud and Noiray Method

This was one of the first simple analytical design methods of the
reinforced unpaved road to Dbe proposed in which the reinforcement
behaviour is treated in a rational way. Although this model is based on
assumptions that clearly oversimplify the behaviour of the road, it has

been successful in stimulating interest in design methods and is



extensively cited in 1later work. This design model deals with the
interaction that occurs between two wheel loads, and makes the implicit
assumption that the so0il behaves in a rigid, perfectly-plastic manner.
The reinforcement is assumed to be linearly elastic. This design
procedure is based on the analysis of a reinforced unpaved road under the
action of a single monotonic load. The effects of repeated loading are
then included by increasing the thickness of the £ill layer by an amount
derived from an empirical rule. 1In this description of the Giroud and
Noiray method, the analysis of traffic loading is not included on the
basis that the consideration of repeated loading is outside the scope of

this thesis.
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Figure 9.1: Idealised Stresses

In this design model, the wheel load is assumed to be transmitted
through the £fill layer such that the vertical stress due to this load is
constant over the base of a truncated pyramid whose sides have angle « as
shown in Figure 9.1, and zero outside. In order to adjust this design
method to model the plane strain case, it is simply necessary to consider
that this load spread action occurs in one direction only. The deformed

shape of the reinforcement is approximated by three parabolas as shown in



Figure 9.2, where the points of zero vertical displacement correspond to
the edges of the 1loaded area at the f£ill base. The fill surface is
assumed to follow the same profile as the reinforcement, and the rut
depth, r, is defined to be the maximum vertical differential displacement

at the fill surface.
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Figure 9.2;: Idealised Deformations

For the case when a’ > a (see Figure 9.2), one half of the soil
displaced under the 1load is assumed to contribute to heave between the

wheels, from which the geometric relationship may be obtained:-

ra’ (9.1)
a+ a’

where § is the maximum downwards displacement of the reinforcement and is
equal to the wheel displacement since in this model compaction of the
£fill wunderneath the 1load is neglected. For the case when a > a’, a
smaller proportion of the displaced soil is assumed to contribute to
heave between the wheels, and the following relationship between the rut

depth and the wheel displacement is derived:—



2ra’ (9.2)
, 2

2a® + 3aa’ - a

In order to calculate the strains in the reinforcement, points X and Y in
Figure 9.2 are initially assumed to be pinned. The average strain in the
three distinct parabolic portions of the reinforcement are then
calculated using equations (9.1) or (9.2) in conjunction with the
appropriate geometric relationship between the arc and subtended chord of

a parabola.

For the case when a’ > a, the average strain in portions X-Y is
greater than in Y-Y. It is assumed in this case that the overburden
between the wheels is insufficient to prevent slippage of the
reinforcement over portion Y-Y so the horizontal restraints at points Y
are removed. The engineering strain in the reinforcement is then assumed

to be constant between points X and is given by the expression:-

e = 2*D (9.3)

a+ a’

where b is the half-length of the reinforcement for portion X-Y and b’ is
the half-length for Y-Y. For the case when a > a’ and points X and Y are
pinned, then the average strain in portion Y-Y exceeds that in portions
X-Y, and in this case the horizontal restraint at Y is retained. The
average strain in the portions of reinforcement under the wheels is

therefore give by:—

-1 (9.4)



The load—displacement response of the road is then obtained by

considering the vertical equilibrium of portion X-Y of the reinforcement
as shown in Figure 9.3.

:

2a

-l

Subgrade reaction
= (Tl + 2 ) Cu

Figure 9.3: Vertical Equilibrium of Reinforcement

The tension, T, is assumed to be constant in this portion and is given

by:-

T = K € (9.5)

where € is the average strain defined either by equation (9.3) or (S.4),
and K is the reinforcement modulus. The vertical reaction between points
X and Y is assumed to be the constant value of (m + 2)cu, where c._ is the
undrained plane strain shear strength of the subgrade. From the geometry

of the parabola, the slope at points X and Y is given by:-

tan(B,) = n (9.6)

where: -

D’lN
o

(9.7)



and the footing displacement, §, is related to the rut depth, r, by
equations (9.1) or (9.2). The condition of vertical equilibrium may be
used to give an expression for pv, the vertical stress at the base of the

fill:-

T .
pv = (m+ 2)cu + a 51n(B°) (9.8)

Substituting for T from equation (9.5) and for sin( BO) from equation

(9.6) gives:-

K € n (9.9)

pv = (m + 2)cu +

which defines the relationship between the rut depth, r, and the vertical
stress at the base of the fill, pv, for a single monotonic load. The
vertical pressure immediately underneath the wheel, pf, is related to pv

by considering the mechanism of load spread in the fill:-
P A = p A (9.10)

where A 1is the contact area under the wheel and A’ is the area at the

base of the truncated pyramid defining the load spread.

In order to obtain a reasonable fit with the experimental data, the
proposal is made in this design method that for the unreinforced case the
maximum vertical subgrade reaction should be set to ncu, the elastic
limit, rather than (w7 + 2)cu which is the value used for the reinforced
case, This difference in bearing capacity is justified on the basis that

the reinforcement provides additional confinement to the subgrade. It is
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likely, however, that <this observed reduction of subgrade bearing
capacity in the unreinforced case is caused by the 'shear stress effect’

(see Section 8.2).

Figure 9.4: Normal and Vertical Forces on Reinforcement

In order to compare numerical and analytical predictions of
behaviour, it is necessary to obtain the relationship between the
vertical stress acting on the reinforcement, and the normal stress
implied by the assumptions made in the Giroud and Noiray model. 1In orxder
to obtain this relationship, consider the normal force Fn and the
vexrtical force Fv acting on a portion of reinforcement of length ds as
shown in Figure 9.4, The assumption is made in the Giroud and Noiray
model that the reinforcement tension is constant which implies that the
shear stresses acting on the reinforcement are zero. The normal and

vertical forces on the element are therefore related by the expression:-—

Fv = Fn cos(B) (9.11)
where B8 1is the angle of inclination of the reinforcement to the
horizontal. The vertical stress, pv, and normal stress, pn, are

therefore given by:-—



Fv EE (9.12)

ds cos(B) ds

which is combined with equation (9.11) to give the result:-

P = P (9.13)

In this design model, therefore, the implication is that a hydrostatic

stress system exists at the base of the fill.

9.2.1 Comparison with Finite Element Results

The assumptions made in the Giroud and Noiray model are compared in
this section with the results of a dual footing model test (ref. MiM) and
the corresponding finite element back-analysis (ref. R10). In making
this comparison, the Giroud and Noiray method is modified in two points
from the original published version in order to make it consistent with
the model test and finite element results. Firstly, in the original
design model the load spread is assumed to occur in two directions,
whereas in this application of the method a plane strain variation is
used in which the load spread occurs in one direction only. Secondly, in
its original form the Giroud and Noiray model uses as the primary
variable the rut depth, r, whereas in order to make direct comparisons
between this model and with the numerical and experimental results it is
necessary to use the footing displacement, §, as the primary variable.
The material properties used in the Giroud and Noiray model are the same

as those used in the finite element analysis with the exception of the



angle which is an additional parameter and for these calculations is

taken to be:-
tan(x) = 0.65 (9.14)

The load/displacement relationship obtained from the Giroud and Noiray
model is compared with the results of the finite element analysis and the

model test in Figure 9.5.

%

Cps p.= Footing pressure

f

15 d = Footing displacement

B =Footing half -width
10

~—-— Giroud and Noiray
Finite element (R10)
— = == Model test (MIM)

| 1 1 |
02 04 06 08
0/8
Figure 9.5: Comparison Between Analytical, Numerical and

Experimental load/Displacement Curves

The Giroud and Noiray method clearly predicts an over-stiff response at
very small displacements which is a direct consequence of the use of a
rigid plastic soil model. As the footing displacement increases, the
values of bearing capacity predicted by the analytical model becomes more
realistic, but the response differs from the numerical and experimental

curves in that the slope increases with footing displacement. This means
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that for large footing displacements the Giroud and Noiray model will

give an overestimate of the capacity of the road.

The normal stress at the £fill base predicted by the Giroud and
Noiray model for a footing displacement of 0.8B is plotted in Figure 9.6,
and@ compared with the corresponding finite element solution reproduced
from Figure 8.5. The normal stress derived from the Giroud and Noiray
method is constant since the assumption of zero frictional stresses
acting on the reinforcement implies that a hydrostatic state of stress
exists at the base of the fill as shown in Section 9.2. The general
magnitude of the normal stresses agree well which is consistent with the
fact that at this particular footing displacement the wheel loads
predicted by the numerical and analytical methods are similar (see Figure

9.5).

The variation of reinforcement strain implied by the Giroud and
Noiray model for this same value of footing displacement is also plotted
in Figure 9.6, and compared with the corresponding finite element results
reproduced from Figure 8.4. The analytical method clearly predicts

magnitudes of strain that in this case are unrealistically large.

The deformed shape of the reinforcement predicted by the Giroud and
Noiray model is plotted in Figure 9.6 and compared with the corresponding
finite element results. The magnitude of displacement immediately
underneath the wheel centre-line calculated using the two methods are
similar indicating that in the numerical solution the maximum
reinforcement displacement is roughly equal to the'footing displacement,
which corresponds to the assumption made in the analytical model. The

Giroud and Noiray method , however, predicts larger heave displacements
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than those obtained from the finite element calculation. This is at
least partly due to the fact that in the analytical model elastic strains
are neglected and an oversimplified mechanism of subgrade heave is

adopted.

Two other important limitations of the Giroud and Noiray design
method may be identified. Firstly, this design model fails to account
for the increase in bearing capacity that is caused by the reversed
curvature of the reinforcement outside the loaded area. Another
important mechanism, described as the 'shear stress effect' in Section
8.2, arises from the tendency of the reinforcement to reduce the
magnitude of the shear stresses transmitted from the f£fill to the
subgrade. It 1is possible that in some situations this mechanism is of
considerable importance, but it 1is not considered explicitly in this

particular design model.

9.3 Sowers Method

The model proposed by Sowers et al. (1982) is one of a number of
design methods presented at the Second International Conference on
Geotextiles in Las Vegas. The design procedure is based on the results
of a series of full scale tests and is a mixture of empiricism and
mechanistic reasoning. This method is similar in many respects to the
Giroud and Noiray approach, but it differs in that it deals with each
wheel 1load in isolation. The assumed mechanism of load spread in the
£fill is similar to that adopted in the Giroud and Noiray model in that
the vertical stress at the fill base due to the wheel load is taken to be

constant over a loaded area of width 2B’ and zero outside (see Figure

9-12



9.7). In contrast to the Giroud and Noiray method, the value of B’ is
given by an empirical function of wheel displacement in which the width

of the loaded area increases with displacement.

2B
| Wheel
Initial position of
fill surface
e _T
oL 16
/

Initial position 4
of reinforcement //

=

Figure 9.7: Idealised Deformations

In the full scale tests performed by Sowers et al., the displacement
of the reinforcement immediately under the centre of the wheel was found
to be less than the wheel displacement due to compaction of the fill. Aan
empirical relationship between these displacements, based on the results
of these tests, 1is therefore adopted in this design method. The
empirical formula quoted in the original publication, however, is
unsatisfactory for general use since it relates only to the fill material
and the compaction procedure used in the tests. 1In order to avoid this
problem, the assumption is made in this description of the Sowers method

that the maximum downwards displacement of the reinforcement is equal to
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the wheel displacement which is consistent with the approach adopted in

the Giroud and Noiray method.

The deformed shape of the portion of reinforcement beneath the
wheel is assumed to be parabolic, with the edges of the loaded area
defining the points of zero vertical displacement (i.e. points X and ¥ in
Figure 9.7). The horizontal displacement of the reinforcement at these
points is also assumed to be zero, thus the average engineering strain in
this portion of reinforcement may be calculated by considering the arc

length between points X and Y and is given by:—

2ls/2 1 . -1
[1 + n ] + n sinh "(n) (9.15)

2

where: -

28 (9.16)

and & is the wheel displacement.

The reinforcement is assumed to be linearly elastic with respect to
engineering strain, thus the average tension in the portion between X and
Y is given by:~

T = Ke (9.17)

where K 1is the reinforcement modulus, and €, the average strain, is

defined by equation (9.15).

9-14



The variations of reinforcement tension are calculated on the
assumption that horxizontal forces acting on the reinforcement are zero.
The horizontal component of tension in the reinforcement is therefore
constant along its length and the tension at point X, Tx' is related to

the tension at point Z, Tz' by the relationship:—

T = _ (9.18)

where BO is the angle of inclination of the reinforcement to the
horizontal at points X and Y. Since it may be shown from the geometry of

the parabola that:-—

1 (9.19)

cos(pB ) =
o (1+ nz)i/z

where 7 1is defined by equation (9.16), then equation (9.18) may be re-

written in the form:—

_ 2.1/2
Tx = Tz (L +n) (9.20)

In order to relate Tz to the average tension in the reinforcement, T, the
assumption is made that the tension varies 1linearly along the
reinforcement giving the relationship:-

2T = TX + T (9.21)

where T is defined by equation (9.17). Although this approach is

inconsistent with the assumptions made regarding the shape of the
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reinforcement and the nature of the soil/reinforcement interface
stresses, it is adopted for the sake of mathematical simplicity.

Combining equations (9.20) and (9.21) gives the relationship between T

and T :—
X
2.1/2
- 27 [1 + 1] (9.22)
x i+ 212 4+ 2

The load/displacement relationship for the wheel is obtained by
considering the vertical equilibrium of the portion of reinforcement

between points X and Y as shown in Figure 9.8,

Figure 9.8: Vertical Equilibrium of Reinforcement

The vertical component of the subgrade reaction, ps. is taken to be:-

ps = (m+ 2) cu + pq (9.23)
where 4 is the plane strain shear strength and pq is the 'effective
surcharge®' caused by the reversed curvature of the reinforcement outside
the loaded area. The condition of vertical equilibrium gives the

following expression for pv. the vertical stress at the base of the

fill.-

9-~16



p = (1r+2)cu + p + — (9.24)

The last term in this expression is the ‘'reinforcement uplift pressure*
and the arbitrary assumption is made at this stage that this is equal to
the ‘effective surcharge', thus:-—
T sin(p )
p. = x _©° (9.25)
BI
Combining equations (9.19), (9.22), (9.24) and (9.25) gives a

relationship between the wheel displacement and the vertical stress at

the base of the fill layer:-

4 K e€n
[14+(1+n°)

p,= (m+2)c, + (9.26)

l/Z]B,

The vertical stress directly underneath the wheel, pf, is related to the

vertical stress at the base of the fill layer, pv, by the expression :—

— B'
e = Qv{ ] (9.27)

The assumption is made 1in this design method that horizontal
stresses acting on the reinforcement are zero. This means that the
stresses at the base of the fill layer are not hydrostatic as was found
to Dbe the case for the Giroud and Noiray model. 1In order to investigate
the relationship between the normal and vertical stresses at the fill
base implied by this assumption, consider the forces acting on an element

of reinforcement at the arbitrary point P shown in Figure 9.9. Since the
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horizontal force on this element is zero, the vertical force applied to

the reinforcement, Fv' is related to the normal component, Fn' by:-

F
. 9.2
F - (9.28)

cos(B)

where B is the angle of inclination of the reinforcement to the

horizontal. The normal pressure pn, and the vertical pressure pv, are
given by:—
F F
pn - n and pv - \'4 (9.29)
ds ds cos(B)

Figure 9.9: Normal and Vertical Forces on Reinforcement

Combining equations (9.28) and (9.29) gives the relationship:-
P, = Py cosz(B) (9.30)

The slope of the reinforcement is related to the position of point P by

the relationship:-
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tan(B) = . (9.31)

where x 1is the distance from the footing centre-line. Equations (9.30)

and (9.31) therefore combine to give the relationship:-—

p. = v (9.32)
n [1+ [zxsr] /2
(8°)*
9.3.1 Comparison with Finite Element Results
iy
°ps / p,= Footing pressure
15k // b =Footing displacement
Yrce B= Footing half -width
10k A
/ —-— Sowers et. al.
4/ ——— Finite element (R1)
g  / — ——~— Model test (A2M)
y/
1 1 I L
0-2 0-4 06 08
o/B
FPigure 9.10: Comparison Between Analytical, Numerical and

Experimental Load/Displacement Curves

The behaviour predicted by the Sowers model may be compared with any
of the single footing finite element calculations described in Chapter 7.

Pihite element run reference Rl has been chosen for special attention,
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however, since it corresponds to the same conditions as the dual footing
finite element calculation used to assess the Giroud and Noiray model in

Section 9.2.1., and has also been discussed in detail in Chapter 8.

The load/displacement relationship obtained from the Sowers model is
plotted in Figure 9.10 and compared with the results of the finite
element calculation and the corresponding model test (A2M). At very low
footing displacements the analytical model provides an overestimate of
the bearing capacity as was also found to be the case for the Giroud and
Noiray model. Although the comparison between the analytical model and
the two other results improves as the displacements increase, it is clear
that at very large wheel displacements this design model will seriously

overestimate the capacity of the road.

The normal stress at the footing base obtained from equation (9.32)
is plotted in Figure 9.11 for a footing displacement of 0.8B and compared
with the corresponding finite element results. The analytical model
predicts stresses of a higher magnitude than those obtained from the
finite element calculation which 1is consistent with the fact that the
wheel 1load calculated using the Sowers method for this displacement is
considerably 1larger than the corresponding finite element value as

indicated by Figure 9.10.

Figure 9.11 also contains a plot in which the reinforcement strains
calculated using the Sowers method are compared with the corresponding
finite element results for a footing displacement of 0.8B. Although the
values predicted by the Sowers method are higher than those obtained from
the finite element model, the slopes of the two curves on the footing

centre—~line are similar which 1is to be expected since the symmetry
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condition requires that horizontal forces acting on the reinforcement are

zero at this point.

A comparison between the vertical displacement of the reinforcement
calculated by the Sowers model and the finite element model for a footing
displacement of O0.8B are also plotted in Figure 9.11. The two results
agree well on the footing centre-line as was found to be the case for the
Giroud and Noiray model. The point of zerco vertical displacement
predicted by the Sowers method is closer to the wheel centre-line than
the corresponding point in the finite element solution, which would
explain why the general magnitude of the strains predicted by the Sowers

model exceed those obtained from the finite element analysis.

The Sowers method clearly does not offer a significant improvement
over the Giroud and Noiray approach. Although this design method does
deal with the increased surcharge on the subgrade arising from the
reversed curvature of the reinforcement which is ignored by Giroud and
Noiray, this is included in an oversimplified way. The Sowers method
deals with each wheel 1load in isolation, and therefore ignores the
possibility that two wheels can interact if the spacing is sufficiently
small which is a disadvantage of this procedure. As was the case with
the Giroud and Noiray method, the Sowers method ignores the 'shear stress
effect’ (see Section 8.2) which may in some cases be an important

mechanism of reinforcement.

9-22



CHAPTER 10 CONCLUDING REMARKS

The work described in this thesis consists of the description of a
finite element model that is valid for large displacements and the use of
the formulation to compute the behaviour of a reinforced unpaved road
deforming in plane strain. Emphasis is placed on the accurate modelling
of the effects of large strain since substantial surface deformations are
generally required to mobilize the reinforcement in structures of this
sort. The analysis of problems in continuum mechanics involving large
displacements is still a relatively new area of research and as a result
no dgeneral, well defined approach exists., The finite element theory
described in this dissertation is based on an Eulerian description of the
deformation which is a method that is particularly suitable for use with
the incremental constitutive laws that are common in Soil Mechanics. The
Jaumann stress rate is adopted in order to satisfy the requirements of

*objectivity’.

This formulation 1is capable of making computations that fall well
outside the usual scope of the finite element analysis of problems in
Soil Mechanics and has therefore been subjected to a rigorous checking
process. Firstly, a number of test problems was performed which involved
large displacement effects but were sufficiently simple so as to have
analytical solutions. Most of these éalculations. which are described in
Chapter 6, consisted of the analysis of the homogeneous deformation of a
block of material having an initially square cross—-section. The finite
element method was shown to be highly effective in solving problems of
this sort, but it should be emphasized that the high level of accuracy

achieved in these problems would not necessarily be expected when
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deformations are non-homogeneous. The second category of test problems
consisted of small strain collapse load calculations. Since the full
reinforced unpaved road problem is a large strain variant of the collapse
load calculation, this series of tests was of considerable importance in
spite of the fact that deformations were small. Although the numerical
formulation was shown to be capable of predicting the collapse loads
within reasonable bounds of accuracy, no indication is given as to‘

whether this is likely to be the case when strains are large.

After the formulation had been checked using these test cases, it
was used to perform a series of back-analysis calculations of the results
of experiments carried out on model reinforced unpaved roads. These
analyses serve partly as additional checks on the finite element computer
program and partly to provide values of quantities that were not measﬁred

in the tests (i.e. reinforcement tension and the soil/reinforcement

interface stress).

The solution scheme was based on the Modified Euler Method, and this
was found to be highly suitable for these back-analysis calculations.
Solution times for a VAX 11/780 computer ranged from between six and
twelve hours of CPU time for the single footing problem and roughly
fifteen hours for the dual footing cases. The slowest part of the
analysis was invariably the ‘'stress update' calculation performed at the
end of each displacement step. This procedure accounted for up to 80% of
the total CPU time and was slower for the Matsuoka material behaviour

than the von Mises case.

A number of general conclusions relating to the behaviour of

reinforced unpaved roads deforming in plane strain under the action of a
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single monotonic 1load can be derived from the results of these back-
analysis calculations. It is clear from both the finite element
computations and the model test results that the reinforcement has a
negligible effect at low surface deformations, but becomes increasingly
effective as deformations become appreciable. For the particular cases
studied in detail, it was found that the reinforcement had little effect
on the load spread action of the £ill, but did tend to reduce the shear
stresses transmitted f£rom the £ill to the subgrade. This latter effect
is not considered in any of the commonly used simple design methods. The
results of the calculation involving a dual footing indicated that
coupling between adjacent wheel 1loads tends to increase the bearing

capacity.

In any practical situation, a reinforced unpaved road is likely to
be subjected to repeated loads, and this needs to be considered in
design. The inclusion of this type of 1loading in a finite element
formulation of the sort described in this dissertation is, however, not
currently feasible since suitable constitutive models are not available
and in any case the computing costs would be prohibitive. Static
calculations of the sort described in this thesis could be used for
design purposes 1if the calculated reinforcement strength and stiffness,
or the fill depth, are increased to cater for the additional requirements
of the cyclic effects. This modification could be derived either from
empirical results or simply from engineering Judgement. A good
description of a procedure of this sort is given by Giroud and Noiray

(1981).

This finite element formulation is based on constitutive laws that

have been kept deliberately simple in order to aid the formulation and
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implementation of the 1large strain finite element equations. It is
clear, however, that in some points these constitutive relationships are
unrealistic, and this aspect of the formulation could be improved in
future work. The most obvious shortcoming of the model is that an
elastic model based on constant parameters is used to model a
frictional material, wheras it is well accepted that the elastic modulus
of such materials depends on the stresses. The modification of this
formulation to include these effects in such a way as to preclude the
possibility of non—conservative material behaviour, however, would
require a considerable amount of further work. The material models would
also benefit from the inclusion of the effects of strain hardening (or
softening). The clay used in the model tests had a shear strength that
increased markedly with depth, whereas a subgrade with constant strength
and stiffess parameters was used in the back—analysis calculations. The
numerical model would be considerably improved if it were modified to
allow the material properties to vary with depth, and this feature should

be included in any future work.

The analysis of a reinforced unpaved road is a good example of a
problem in Soil Mechanics in which large strain effects are important.
The formulation described in this thesis has been developed specifically
to solve this particular problem, but it is useful to consider whether
other problems of a similar nature exist within geotechnical engineering.
An obvious example is the cavity expansion that occurs during pile
driving. A simple example of a calculation of this sort is included in
this thesis, but the formulation could also be used to investigate more
complex conditions of geometry and material behaviour. A number of
applications exist in the analysis of offshore foundations where the soil

is soft and large displacements can occur. BAppreciable geometry changes
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can also occur in the analysis of problems involving consolidation

effects.

The size and complexity of problems involving large displacements
that can be solved using finite element formulations of the sort
described in this thesis are limited by the speed and efficiency of the
available computing hardware. If the capabilities of computing equipment
increase at the current rate, then large strain computations will be a

fruitful area of future research.
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